Thursday, February 13, 2025
No menu items!
HomeNatureGlobal engineering effects of soil invertebrates on ecosystem functions

Global engineering effects of soil invertebrates on ecosystem functions

  • Johnson, N. et al. Global Soil Biodiversity Atlas https://doi.org/10.2788/2613 (European Commission, 2016).

  • Eisenhauer, N. & Hines, J. Invertebrate biodiversity and conservation. Curr. Biol. 31, R1214–R1218 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wilson, E. O. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).

    Article 
    MATH 

    Google Scholar
     

  • Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenhauer, N. The action of an animal ecosystem engineer: identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53, 343–352 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rosenberg, Y. et al. The global biomass and number of terrestrial arthropods. Sci. Adv. 9, eabq4049 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kass, J. M. et al. The global distribution of known and undiscovered ant biodiversity. Sci. Adv. 8, eabp9908 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lavelle, P. et al. Soil macroinvertebrate communities: a world-wide assessment. Glob. Ecol. Biogeogr. 31, 1261–1276 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Lavelle, P. et al. Soil aggregation, ecosystem engineers and the C cycle. Acta Oecol. 105, 103561 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Coggan, N. V., Hayward, M. W. & Gibb, H. A global database and “state of the field” review of research into ecosystem engineering by land animals. J. Anim. Ecol. 87, 974–994 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Mallen-Cooper, M., Nakagawa, S. & Eldridge, D. J. Global meta-analysis of soil-disturbing vertebrates reveals strong effects on ecosystem patterns and processes. Glob. Ecol. Biogeogr. 28, 661–679 (2019).

    Article 

    Google Scholar
     

  • Jouquet, P. et al. The impact of termites on soil sheeting properties is better explained by environmental factors than by their feeding and building strategies. Geoderma 412, 115706 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Farji-Brener, A. G. & Werenkraut, V. The effects of ant nests on soil fertility and plant performance: a meta-analysis. J. Anim. Ecol. 86, 866–877 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • van Groenigen, J. W. et al. How fertile are earthworm casts? A meta-analysis. Geoderma 338, 525–535 (2019).

    Article 
    ADS 

    Google Scholar
     

  • van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lavelle, P. et al. Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).

    CAS 
    MATH 

    Google Scholar
     

  • Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P. & Lepage, M. Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl. Soil Ecol. 32, 153–164 (2006).

    Article 

    Google Scholar
     

  • Jouquet, P. et al. Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: a rainfall simulation experiment. Appl. Soil Ecol. 61, 161–168 (2012).

    Article 

    Google Scholar
     

  • Cerezer, F. O. et al. Latitudinal gradient of termite diversity indicates higher diversification and narrower thermal niches in the tropics. Glob. Ecol. Biogeogr. 29, 1967–1977 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Schultheiss, P. et al. The abundance, biomass, and distribution of ants on Earth. Proc. Natl Acad. Sci. USA 119, e2201550119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, J. P. & Jones, C. G. Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85, 2071–2081 (2004).

    Article 
    MATH 

    Google Scholar
     

  • Meyer, M. D., North, M. P., Gray, A. N. & Zald, H. S. J. Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest. Plant Soil 294, 113–123 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Soil depth alters the effect of species diversity on productivity in an experimental karst herbaceous community. Plant Soil 471, 61–71 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Xiao, Q. et al. Impact of soil thickness on productivity and nitrate leaching from sloping cropland in the upper Yangtze River Basin. Agric. Ecosyst. Environ. 311, 107266 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Crain, C. M. & Bertness, M. D. Ecosystem engineering across environmental gradients: implications for conservation and management. BioScience 56, 211–218 (2006).

    Article 
    MATH 

    Google Scholar
     

  • Sousa, T. R. et al. Water table depth modulates productivity and biomass across Amazonian forests. Glob. Ecol. Biogeogr. 31, 1571–1588 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Waters, J. S. & Harrison, J. F. in Metabolic Ecology: A Scaling Approach (eds Sibly, R. M. et al.) https://doi.org/10.1002/9781119968535.ch16 (Wiley, 2012).

  • Narváez, C., Sabat, P. & Sanchez-Hernandez, J. C. Synergistic effects of pesticides and environmental variables on earthworm standard metabolic rate. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 260, 109404 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wurst, S., Sonnemann, I. & Zaller, J. G. in Aboveground–Belowground Community Ecology (eds Ohgushi, T. et al.) https://doi.org/10.1007/978-3-319-91614-9_8 (2018).

  • Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zachariah, N., Das, A., Murthy, T. G. & Borges, R. M. Building mud castles: a perspective from brick-laying termites. Sci. Rep. 7, 4692 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guhra, T., Wonneberger, A., Stolze, K., Ritschel, T. & Totsche, K. U. The functional role of earthworm mucus during aggregation. J. Plant Nutr. Soil Sci. 187, 63–76 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Subi, S. & Sheela, A. M. Review on termite mound soil characteristics and agricultural importance. J. Agric. Ecol. Res. Int. 21, 1–12 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Singh, J. in Sustainable Food Systems from Agriculture to Industry (ed. Galanakis, C. M.) https://doi.org/10.1016/B978-0-12-811935-8.00003-2 (Academic Press, 2018).

  • Cerdà, A., Jurgensen, M. F. & Bodi, M. B. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia 64, 527–531 (2009).

    Article 

    Google Scholar
     

  • Aalders, I. H., Augustinus, P. G. E. F. & Nobbe, J. M. The contribution of ants to soil erosion: a reconnaissance survey. Catena 16, 449–459 (1989).

    Article 

    Google Scholar
     

  • Cammeraat, E. L. H. & Risch, A. C. The impact of ants on mineral soil properties and processes at different spatial scales. J. Appl. Entomol. 132, 285–294 (2008).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Li, X. R., Gao, Y. H., Su, J. Q., Jia, R. L. & Zhang, Z. S. Ants mediate soil water in arid desert ecosystems: mitigating rainfall interception induced by biological soil crusts? Appl. Soil Ecol. 78, 57–64 (2014).

    Article 
    ADS 

    Google Scholar
     

  • van Groenigen, J. W. et al. The soil N cycle: new insights and key challenges. SOIL 1, 235–256 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kizilkaya, R., Karaca, A., Turgay, O. C. & Cetin, S. C. in Biology of Earthworms (ed. Karaca, A.) https://doi.org/10.1007/978-3-642-14636-7_9 (Springer, 2011).

  • Angst, G. et al. Earthworms as catalysts in the formation and stabilization of soil microbial necromass. Glob. Chang. Biol. 28, 4775–4782 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Muvengwi, J., Fritz, H. & Witkowski, E. Do large termite mounds effect woody plant phylogenetic diversity and endemism across African savannas? Divers. Distrib. 28, 894–903 (2022).

    Article 

    Google Scholar
     

  • Zhou, L.-F. et al. Antibacterial potential of termite-associated Streptomyces spp. ACS Omega 6, 4329–4334 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bulmer, M. S., Franco, B. A. & Fields, E. G. Subterranean termite social alarm and hygienic responses to fungal pathogens. Insects 10, 10080240 (2019).

    Article 

    Google Scholar
     

  • Chen, Q.-L. et al. Termite mounds reduce soil microbial diversity by filtering rare microbial taxa. Environ. Microbiol. 23, 2659–2668 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Evans, T. A., Dawes, T. Z., Ward, P. R. & Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2, 262 (2011).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fonte, S. J., Hsieh, M. & Mueller, N. D. Earthworms contribute significantly to global food production. Nat. Commun. 14, 5713 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chomicki, G. & Renner, S. S. The interactions of ants with their biotic environment. Proc. Biol. Sci. 284, 20170013 (2017).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jenkins, D. G. & Quintana-Ascencio, P. F. A solution to minimum sample size for regressions. PLoS ONE 15, e0229345 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Teets, N. M., Yi, S.-X., Lee, R. E. Jr & Denlinger, D. L. Calcium signaling mediates cold sensing in insect tissues. Proc. Natl Acad. Sci. USA 110, 9154–9159 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zanne, A. E. et al. Termite sensitivity to temperature affects global wood decay rates. Science 377, 1440–1444 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sagi, N. & Hawlena, D. Arthropods as the engine of nutrient cycling in arid ecosystems. Insects 12, 726 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci Data 9, 409 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. New global MuSyQ GPP/NPP remote sensing products from 1981 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 5596–5612 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pelletier, J. D. et al. Global 1-km gridded thickness of soil, regolith, and sedimentary deposit layers. ORNL DAAC https://doi.org/10.3334/ornldaac/1304 (2016).

  • Mizumoto, N. & Bourguignon, T. The evolution of body size in termites. Proc. Biol. Sci. 288, 20211458 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • California Academy of Sciences. AntWeb v.8.106.1. https://www.antweb.org.

  • Mathieu, J. EGrowth: a global database on intraspecific body growth variability in earthworm. Soil Biol. Biochem. 122, 71–80 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Pham, Q. V. et al. Using morpho-anatomical traits to predict the effect of earthworms on soil water infiltration. Geoderma 429, 116245 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lang, B. & Russell, D. J. Effects of earthworms on bulk density: a meta‐analysis. Eur. J. Soil Sci. 71, 80–83 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Chaudhuri, P., Nath, S., Pal, T. & Dey, S. K. Earthworm casting activities under rubber (Hevea brasiliensis) plantations in Tripura (India). World J. Agric. Sci. 5, 515–521 (2009).

    CAS 

    Google Scholar
     

  • Knight, K. Earthworm proportions change as they grow. J. Exp. Biol. 217, 1834 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Kaspari, M. & Weiser, M. D. The size–grain hypothesis and interspecific scaling in ants. Funct. Ecol. 13, 530–538 (1999).

    Article 
    MATH 

    Google Scholar
     

  • Lajeunesse, M. J. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92, 2049–2055 (2011).

    Article 
    MATH 

    Google Scholar
     

  • Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).

    Article 
    MATH 

    Google Scholar
     

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R version 0.2.4 https://CRAN.R-project.org/web/packages/DHARMa/vignettes/DHARMa.html (2019).

  • Tsagris, M. & Papadakis, M. Taking R to its limits: 70+ tips. Preprint at PeerJ Prepr. 6, e26605v1 (2018).

  • Fragkos, K. C., Tsagris, M. & Frangos, C. C. Publication bias in meta-analysis: confidence intervals for Rosenthal’s fail-safe number. Int. Sch. Res. Notices 2014, 825383 (2014).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 8, 39–42 (2020).

    Article 
    MATH 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).

  • Wu, D., Du, E., Eisenhauer, N., Mathieu, J. & Chu, C. Global engineering effects of soil invertebrates on ecosystem functions. Figshare https://doi.org/10.6084/m9.figshare.27823221 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments