Johnson, N. et al. Global Soil Biodiversity Atlas https://doi.org/10.2788/2613 (European Commission, 2016).
Eisenhauer, N. & Hines, J. Invertebrate biodiversity and conservation. Curr. Biol. 31, R1214–R1218 (2021).
Wilson, E. O. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).
Eisenhauer, N. The action of an animal ecosystem engineer: identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53, 343–352 (2010).
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
Rosenberg, Y. et al. The global biomass and number of terrestrial arthropods. Sci. Adv. 9, eabq4049 (2023).
Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
Kass, J. M. et al. The global distribution of known and undiscovered ant biodiversity. Sci. Adv. 8, eabp9908 (2022).
Lavelle, P. et al. Soil macroinvertebrate communities: a world-wide assessment. Glob. Ecol. Biogeogr. 31, 1261–1276 (2022).
Lavelle, P. et al. Soil aggregation, ecosystem engineers and the C cycle. Acta Oecol. 105, 103561 (2020).
Coggan, N. V., Hayward, M. W. & Gibb, H. A global database and “state of the field” review of research into ecosystem engineering by land animals. J. Anim. Ecol. 87, 974–994 (2018).
Mallen-Cooper, M., Nakagawa, S. & Eldridge, D. J. Global meta-analysis of soil-disturbing vertebrates reveals strong effects on ecosystem patterns and processes. Glob. Ecol. Biogeogr. 28, 661–679 (2019).
Jouquet, P. et al. The impact of termites on soil sheeting properties is better explained by environmental factors than by their feeding and building strategies. Geoderma 412, 115706 (2022).
Farji-Brener, A. G. & Werenkraut, V. The effects of ant nests on soil fertility and plant performance: a meta-analysis. J. Anim. Ecol. 86, 866–877 (2017).
van Groenigen, J. W. et al. How fertile are earthworm casts? A meta-analysis. Geoderma 338, 525–535 (2019).
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
Lavelle, P. et al. Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).
Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P. & Lepage, M. Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl. Soil Ecol. 32, 153–164 (2006).
Jouquet, P. et al. Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: a rainfall simulation experiment. Appl. Soil Ecol. 61, 161–168 (2012).
Cerezer, F. O. et al. Latitudinal gradient of termite diversity indicates higher diversification and narrower thermal niches in the tropics. Glob. Ecol. Biogeogr. 29, 1967–1977 (2020).
Schultheiss, P. et al. The abundance, biomass, and distribution of ants on Earth. Proc. Natl Acad. Sci. USA 119, e2201550119 (2022).
Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778 (2018).
Wright, J. P. & Jones, C. G. Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85, 2071–2081 (2004).
Meyer, M. D., North, M. P., Gray, A. N. & Zald, H. S. J. Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest. Plant Soil 294, 113–123 (2007).
Liu, Y. et al. Soil depth alters the effect of species diversity on productivity in an experimental karst herbaceous community. Plant Soil 471, 61–71 (2022).
Xiao, Q. et al. Impact of soil thickness on productivity and nitrate leaching from sloping cropland in the upper Yangtze River Basin. Agric. Ecosyst. Environ. 311, 107266 (2021).
Crain, C. M. & Bertness, M. D. Ecosystem engineering across environmental gradients: implications for conservation and management. BioScience 56, 211–218 (2006).
Sousa, T. R. et al. Water table depth modulates productivity and biomass across Amazonian forests. Glob. Ecol. Biogeogr. 31, 1571–1588 (2022).
Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).
Waters, J. S. & Harrison, J. F. in Metabolic Ecology: A Scaling Approach (eds Sibly, R. M. et al.) https://doi.org/10.1002/9781119968535.ch16 (Wiley, 2012).
Narváez, C., Sabat, P. & Sanchez-Hernandez, J. C. Synergistic effects of pesticides and environmental variables on earthworm standard metabolic rate. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 260, 109404 (2022).
Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).
Wurst, S., Sonnemann, I. & Zaller, J. G. in Aboveground–Belowground Community Ecology (eds Ohgushi, T. et al.) https://doi.org/10.1007/978-3-319-91614-9_8 (2018).
Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).
Zachariah, N., Das, A., Murthy, T. G. & Borges, R. M. Building mud castles: a perspective from brick-laying termites. Sci. Rep. 7, 4692 (2017).
Guhra, T., Wonneberger, A., Stolze, K., Ritschel, T. & Totsche, K. U. The functional role of earthworm mucus during aggregation. J. Plant Nutr. Soil Sci. 187, 63–76 (2024).
Subi, S. & Sheela, A. M. Review on termite mound soil characteristics and agricultural importance. J. Agric. Ecol. Res. Int. 21, 1–12 (2020).
Singh, J. in Sustainable Food Systems from Agriculture to Industry (ed. Galanakis, C. M.) https://doi.org/10.1016/B978-0-12-811935-8.00003-2 (Academic Press, 2018).
Cerdà, A., Jurgensen, M. F. & Bodi, M. B. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia 64, 527–531 (2009).
Aalders, I. H., Augustinus, P. G. E. F. & Nobbe, J. M. The contribution of ants to soil erosion: a reconnaissance survey. Catena 16, 449–459 (1989).
Cammeraat, E. L. H. & Risch, A. C. The impact of ants on mineral soil properties and processes at different spatial scales. J. Appl. Entomol. 132, 285–294 (2008).
Li, X. R., Gao, Y. H., Su, J. Q., Jia, R. L. & Zhang, Z. S. Ants mediate soil water in arid desert ecosystems: mitigating rainfall interception induced by biological soil crusts? Appl. Soil Ecol. 78, 57–64 (2014).
van Groenigen, J. W. et al. The soil N cycle: new insights and key challenges. SOIL 1, 235–256 (2015).
Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).
Kizilkaya, R., Karaca, A., Turgay, O. C. & Cetin, S. C. in Biology of Earthworms (ed. Karaca, A.) https://doi.org/10.1007/978-3-642-14636-7_9 (Springer, 2011).
Angst, G. et al. Earthworms as catalysts in the formation and stabilization of soil microbial necromass. Glob. Chang. Biol. 28, 4775–4782 (2022).
Muvengwi, J., Fritz, H. & Witkowski, E. Do large termite mounds effect woody plant phylogenetic diversity and endemism across African savannas? Divers. Distrib. 28, 894–903 (2022).
Zhou, L.-F. et al. Antibacterial potential of termite-associated Streptomyces spp. ACS Omega 6, 4329–4334 (2021).
Bulmer, M. S., Franco, B. A. & Fields, E. G. Subterranean termite social alarm and hygienic responses to fungal pathogens. Insects 10, 10080240 (2019).
Chen, Q.-L. et al. Termite mounds reduce soil microbial diversity by filtering rare microbial taxa. Environ. Microbiol. 23, 2659–2668 (2021).
Evans, T. A., Dawes, T. Z., Ward, P. R. & Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2, 262 (2011).
Fonte, S. J., Hsieh, M. & Mueller, N. D. Earthworms contribute significantly to global food production. Nat. Commun. 14, 5713 (2023).
Chomicki, G. & Renner, S. S. The interactions of ants with their biotic environment. Proc. Biol. Sci. 284, 20170013 (2017).
Jenkins, D. G. & Quintana-Ascencio, P. F. A solution to minimum sample size for regressions. PLoS ONE 15, e0229345 (2020).
Teets, N. M., Yi, S.-X., Lee, R. E. Jr & Denlinger, D. L. Calcium signaling mediates cold sensing in insect tissues. Proc. Natl Acad. Sci. USA 110, 9154–9159 (2013).
Zanne, A. E. et al. Termite sensitivity to temperature affects global wood decay rates. Science 377, 1440–1444 (2022).
Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).
Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177 (2019).
Sagi, N. & Hawlena, D. Arthropods as the engine of nutrient cycling in arid ecosystems. Insects 12, 726 (2021).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci Data 9, 409 (2022).
Wang, J. et al. New global MuSyQ GPP/NPP remote sensing products from 1981 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 5596–5612 (2021).
Pelletier, J. D. et al. Global 1-km gridded thickness of soil, regolith, and sedimentary deposit layers. ORNL DAAC https://doi.org/10.3334/ornldaac/1304 (2016).
Mizumoto, N. & Bourguignon, T. The evolution of body size in termites. Proc. Biol. Sci. 288, 20211458 (2021).
Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
California Academy of Sciences. AntWeb v.8.106.1. https://www.antweb.org.
Mathieu, J. EGrowth: a global database on intraspecific body growth variability in earthworm. Soil Biol. Biochem. 122, 71–80 (2018).
Pham, Q. V. et al. Using morpho-anatomical traits to predict the effect of earthworms on soil water infiltration. Geoderma 429, 116245 (2023).
Lang, B. & Russell, D. J. Effects of earthworms on bulk density: a meta‐analysis. Eur. J. Soil Sci. 71, 80–83 (2020).
Chaudhuri, P., Nath, S., Pal, T. & Dey, S. K. Earthworm casting activities under rubber (Hevea brasiliensis) plantations in Tripura (India). World J. Agric. Sci. 5, 515–521 (2009).
Knight, K. Earthworm proportions change as they grow. J. Exp. Biol. 217, 1834 (2014).
Kaspari, M. & Weiser, M. D. The size–grain hypothesis and interspecific scaling in ants. Funct. Ecol. 13, 530–538 (1999).
Lajeunesse, M. J. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92, 2049–2055 (2011).
Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R version 0.2.4 https://CRAN.R-project.org/web/packages/DHARMa/vignettes/DHARMa.html (2019).
Tsagris, M. & Papadakis, M. Taking R to its limits: 70+ tips. Preprint at PeerJ Prepr. 6, e26605v1 (2018).
Fragkos, K. C., Tsagris, M. & Frangos, C. C. Publication bias in meta-analysis: confidence intervals for Rosenthal’s fail-safe number. Int. Sch. Res. Notices 2014, 825383 (2014).
Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 8, 39–42 (2020).
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).
Wu, D., Du, E., Eisenhauer, N., Mathieu, J. & Chu, C. Global engineering effects of soil invertebrates on ecosystem functions. Figshare https://doi.org/10.6084/m9.figshare.27823221 (2024).