Thursday, February 13, 2025
No menu items!
HomeNatureTranscriptional adaptation upregulates utrophin in Duchenne muscular dystrophy

Transcriptional adaptation upregulates utrophin in Duchenne muscular dystrophy

  • Blake, D. J., Weir, A., Newey, S. E. & Davies, K. E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82, 291–329 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Duan, D., Goemans, N., Takeda, S., Mercuri, E. & Aartsma-Ru, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers. 7, 13 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Helliwell, T. R., Man, N. T., Morris, G. E. & Davies, K. E. The dystrophin-related protein, utrophin, is expressed on the sarcolemma of regenerating human skeletal-muscle fibers in dystrophies and inflammatory myopathies. Neuromuscul. Disord. 2, 177–184 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anthony, K. et al. Biochemical characterization of patients with in-frame or out-of-frame DMD deletions pertinent to exon 44 or 45 skipping. JAMA Neurol. 71, 32–40 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Guiraud, S. & Davies, K. Utrophin correlates with disease severity in Duchenne muscular dystrophy. Med. 4, 220–222 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, A. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230–233 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Brolosy, M. A. & Stainier, D. Y. R. Genetic compensation: a phenomenon in search of mechanisms. PLoS Genet. 13, e1006780 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendell, J. R. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 74, 637–647 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bushby, K. et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 50, 477–487 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Duan, D., Luo, J. & Zhang, Y. AAV-mediated micro-dystrophin gene therapy in dystrophin-deficient mice. Mol. Ther. 26, 2975–2986 (2018).

    Article 

    Google Scholar
     

  • Deconinck, A. E. et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell. 90, 717–727 (1997).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Law, D. J., Allen, D. L. & Tidball, J. G. Talin, vinculin and DRP (utrophin) concentrations are increased at mdx myotendinous junctions following onset of necrosis. J. Cell Sci. 107, 1477–1483 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Georgieva, A. M. et al. Inactivation of Sirt6 ameliorates muscular dystrophy in mdx mice by releasing suppression of utrophin expression. Nat. Commun. 13, 4184 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Janghra, N. et al. Correlation of utrophin levels with the dystrophin protein complex and muscle fibre regeneration in Duchenne and Becker muscular dystrophy muscle biopsies. PLoS ONE 11, e0150818 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleopa, K. A., Drousiotou, A., Mavrikiou, E., Ormiston, A. & Kyriakides, T. Naturally occurring utrophin correlates with disease severity in Duchenne muscular dystrophy. Hum. Mol. Genet. 15, 1623–1628 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masubuchi, N., Shidoh, Y., Kondo, S., Takatoh, J. & Hanaoka, K. Subcellular localization of dystrophin isoforms in cardiomyocytes and phenotypic analysis of dystrophin-deficient mice reveal cardiac myopathy is predominantly caused by a deficiency in full-length dystrophin. Exp Anim. 62, 211–217 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Z. et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568, 259–263 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Serobyan, V. et al. Transcriptional adaptation in Caenorhabditis elegans. eLife 9, e50014 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kontarakis, Z. & Stainier, D. Y. R. Genetics in light of transcriptional adaptation. Trends Genet. 36, 926–935 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sztal, T. E. & Stainier, D. Y. R. Transcriptional adaptation: a mechanism underlying genetic robustness. Development 147, dev186452 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jakutis, G. & Stainier, D. Y. R. Genotype–phenotype relationships in the context of transcriptional adaptation and genetic robustness. Annu. Rev. Genet. 55, 71–91 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jiang, Z. et al. Parental mutations influence wild-type offspring via transcriptional adaptation. Sci. Adv. 8, eabj2029 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez-Abascal, J., Wang, L., Graziano, B., Johnson, C. K. & Bianchi, L. Exon dependent transcriptional adaptation by exon-junction complex proteins Y14/RNP-4 and MAGOH/MAG-1 in Caenorhabditis elegans. PLoS Genet. 18, e1010488 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welker, J. M., Serobyan, V., Esfahani, E. Z. & Stainier, D. Y. R. Partial sequence identity in a 25-nucleotide long element is sufficient for transcriptional adaptation in the Caenorhabditis elegans act-5/act-3 model. PLoS Genet. 19, e1010806 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuffery-Giraud, S. et al. Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum. Mutat. 30, 934–945 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juan-Mateu, J. et al. Interplay between DMD point mutations and splicing signals in dystrophinopathy phenotypes. PLoS ONE 8, e59916 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flanigan, K. M. et al. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene. Hum. Mutat. 32, 299–308 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Boireau, S. et al. The transcriptional cycle of HIV-1 in real-time and live cells. J. Cell Biol. 179, 291–304 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dujardin, G. et al. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54, 683–690 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Listerman, I., Sapra, A. K. & Neugebauer, K. M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marasco, L. E. et al. Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy. Cell 185, 2057–2070 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lalonde, S. et al. Frameshift indels introduced by genome editing can lead to in-frame exon skipping. PLoS ONE 12, e0178700 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Anderson, J. L. et al. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay. PLoS Genet. 13, e1007105 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q. & Krainer, A. R. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31, 3568–3571 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maquat, L. E. Nonsense-mediated mRNA decay in mammals. J. Cell Sci. 118, 1773–1776 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Monaghan, L., Longman, D. & Cáceres, J. F. Translation-coupled mRNA quality control mechanisms. EMBO J. 42, e114378 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy, J. J., Esser, K. A. & Andrade, F. H. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am. J. Physiol. Cell Physiol. 293, C451–C457 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verhaart, I. E. et al. The dynamics of compound, transcript, and protein effects after treatment with 2OMePS antisense oligonucleotides in mdx mice. Mol. Ther. Nucleic Acids 3, e148 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhoke, N. R. et al. A novel CRISPR–Cas9 strategy to target DYSTROPHIN mutations downstream of exon 44 in patient-specific DMD iPSCs. Cells 13, 972 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, G. et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat. Biotechnol. 38, 169–175 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Doherty, E. A. & Doudna, J. A. Ribozyme structures and mechanisms. Annu. Rev. Biochem. 69, 597–615 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Arechavala-Gomeza, V. et al. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum. Gene Ther. 18, 798–810 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galli, F. et al. Cell-mediated exon skipping normalizes dystrophin expression and muscle function in a new mouse model of Duchenne muscular dystrophy. EMBO Mol. Med. https://doi.org/10.1038/s44321-024-00031-3 (2024).

  • Tinsley, J. M. et al. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384, 349–353 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sengupta, K., Loro, E. & Khurana, T. S. PMO-based let-7c site blocking oligonucleotide (SBO) mediated utrophin upregulation in mdx mice, a therapeutic approach for Duchenne muscular dystrophy (DMD). Sci. Rep. 10, 21492 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlice-Dos-Reis, T. et al. Investigation of mutations in the HBB gene using the 1,000 genomes database. PLoS ONE 12, e0174637 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, M. A. et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet. Med. 20, 351–359 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dietz, H. C. et al. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics 17, 468–475 (1993).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Marasco, L. E. & Kornblihtt, A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Mikutis, S. et al. Proximity-induced nucleic acid degrader (PINAD) approach to targeted RNA degradation using small molecules. ACS Cent. Sci. 9, 892–904 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farruggio, A. P. et al. Genomic integration of the full-length dystrophin coding sequence in Duchenne muscular dystrophy induced pluripotent stem cells. Biotechnol. J. https://doi.org/10.1002/biot.201600477 (2017).

  • Kowarz, E. et al. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Nafría, J., Watson, J. F. & Greger, I. H. IVA cloning: a single-tube universal cloning system exploiting bacterial in vivo assembly. Sci. Rep. 6, 27459 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouyahya, A. et al. Pharmacological properties of trichostatin A, focusing on the anticancer potential: a comprehensive review. Pharmaceuticals 15, 1235 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Veloso, A. et al. Genome-wide transcriptional effects of the anti-cancer agent camptothecin. PLoS ONE 8, e78190 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mamchaoui, K. et al. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet. Muscle 1, 34 (2011).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protocols 8, 2281–2308 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mandric, I. et al. Fast bootstrapping-based estimation of confidence intervals of expression levels and differential expression from RNA-seq data. Bioinformatics 33, 3302–3304 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments