Thursday, February 6, 2025
No menu items!
HomeNatureThe genetic origin of the Indo-Europeans

The genetic origin of the Indo-Europeans

  • Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kloekhorst, A. in The Indo-European Puzzle Revisited: Integrating Archaeology, Genetics, and Linguistics (eds Kristiansen, K. et al.) 42–60 (Cambridge Univ. Press, 2023).

  • Kroonen, G., Barjamovic, G. & Peyrot, M. Linguistic supplement to Damgaard et al. 2018: Early Indo-European languages, Anatolian, Tocharian and Indo-Iranian. Zenodo https://doi.org/10.5281/zenodo.1240524 (2018).

  • Anthony, D. W. The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007).

  • Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Narasimhan V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 590 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Allentoft, M. E. et al. Population genomics of post-glacial western Eurasia. Nature 625, 301–311 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lazaridis, I. et al. Ancient DNA from Mesopotamia suggests distinct Pre-Pottery and Pottery Neolithic migrations into Anatolia. Science 377, 982–987 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skourtanioti, E. et al. Genomic history of Neolithic to Bronze Age Anatolia, Northern Levant and Southern Caucasus. Cell 181, 1158–1175 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nikitin, A. G. et al. A genomic history of the North Pontic Region from the Neolithic to the Bronze Age. https://doi.org/10.1038/s41586-024-08372-2 (2025).

  • Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zeng, T. C. et al. Postglacial genomes from foragers across Northern Eurasia reveal prehistoric mobility associated with the spread of the Uralic and Yeniseian languages. Nature (in press).

  • Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vybornov, A. et al. Diet and chronology of Neolithic–Eneolithic cultures (from 6500 to 4700 cal BC) in the Lower Volga Basin. Radiocarbon 60, 1597–1610 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Gimbutas, M. The Prehistory of Eastern Europe (Peabody Museum, 1956).

  • Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Anthony, D. W. et al. The Eneolithic cemetery at Khvalynsk on the Volga River. Praehist. Z. 97, 22–67 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Penske, S. et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature 620, 358–365 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikitin, A. G., Ivanova, S., Culleton, B. J., Potekhina, I. & Reich, D. New radiocarbon and stable isotope data from the Usatove culture site of Mayaky in Ukraine. SSRN https://doi.org/10.2139/ssrn.4236123 (2023).

    Article 

    Google Scholar
     

  • Govedarica, B. & Manzura, I. The Giurgiulesti cemetery in chronological and cultural context of Southeastern and Eastern Europe. Eurasia Antiqua 22, 1–39 (2016).

    MATH 

    Google Scholar
     

  • Skorobogatov, A. M. Pamyatniki Neolita I Eneolita v Ust’e Chernoi Kalitvy. Trudy Voronezhskogo Oblastnogo Kraevedcheskogo Muzeiya Vyp. 3, 47–53 (2019).


    Google Scholar
     

  • Skorobogatov, A. M. & Smol’janinov, R. V. Srednestogovskie materialy v bassejne Verhnego i Srednego Dona. Rossiyskaya arkheologiya 2013, 126–136 (2013).


    Google Scholar
     

  • Shishlina, N. I. et al. Paleoecology, subsistence, and 14C chronology of the Eurasian Caspian steppe Bronze Age. Radiocarbon 51, 481–499 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Korenevskii, S. N. Rozhdenie Kurgana (Taus, 2012).

  • Zhur, K. V. et al. Human DNA from the oldest Eneolithic cemetery in Nalchik points the spread of farming from the Caucasus to the Eastern European steppes. iScience https://doi.org/10.1016/j.isci.2024.110963 (2024).

  • Altınışık, N. E. et al. A genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia during the Neolithic transition. Sci. Adv. https://doi.org/10.1126/sciadv.abo3609 (2022).

  • de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lazaridis, I. The evolutionary history of human populations in Europe. Curr. Opin. Genet. Dev. 53, 21–27 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kassian, A. S. et al. Rapid radiation of the inner Indo-European languages: an advanced approach to Indo-European lexicostatistics. Linguistics 59, 949–979 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Yaka, R. et al. Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Curr. Biol. https://doi.org/10.1016/j.cub.2021.03.050 (2021).

  • Egfjord, A. F.-H. et al. Genomic steppe ancestry in skeletons from the Neolithic single grave culture in Denmark. PLoS ONE 16, e0244872 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • A genetic probe into the ancient and medieval history of Southern Europe and West Asia. Science 377, 940–951 (2022).

  • Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fournier, R., Tsangalidou, Z., Reich, D. & Palamara, P. F. Haplotype-based inference of recent effective population size in modern and ancient DNA samples. Nat. Commun. 14, 7945 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fowler, C. et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature 601, 584–587 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shishlina, N. Reconstruction of the Bronze Age of the Caspian steppes: Life Styles and Life Ways of Pastoral Nomads (British Archaeological Reports, 2008).

  • Olander, T. Indo-European cladistic nomenclature. Indogermanische Forschungen 124, 231–244 (2019).

  • Anthony, D. W. & Ringe, D. The Indo-European homeland from linguistic and archaeological perspectives. Annu. Rev. Linguist. 1, 199–219 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Pronk, T. C. Indo-European secondary products terminology and the dating of Proto-Indo-Anatolian. J. Indo-European Stud. 49, 141–170 (2022).

    MATH 

    Google Scholar
     

  • Ringe, D., Warnow, T. & Taylor, A. Indo-European and computational cladistics. Trans. Philol. Soc. 100, 59–129 (2002).

    Article 
    MATH 

    Google Scholar
     

  • Saag, L. et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 7, eabd6535 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroonen, G., Jakob, A., Palmér, A. I., van Sluis, P. & Wigman, A. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages. PLoS ONE 17, e0275744 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kristiansen, K. in Dispersals and Diversification: Linguistic and Archaeological Perspectives on the Early Stages of Indo-European (eds Serangeli, M. & Olander, T.) 157–165 (Brill, 2019).

  • Massicotte, P. & South, A. rnaturalearth: World map data from Natural Earth. https://docs.ropensci.org/rnaturalearth/ (2024).

  • Cassidy, L. M. et al. A dynastic elite in monumental Neolithic society. Nature 582, 384–388 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Järve, M. et al. Shifts in the genetic landscape of the Western Eurasian steppe associated with the beginning and end of the Scythian Dominance. Curr. Biol. 29, 2430–2441 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasia’s eastern steppe. Cell 183, 890–904 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kumar, V. et al. Bronze and Iron Age population movements underlie Xinjiang population history. Science 376, 62–69 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, F. et al. The genomic origins of the Bronze Age Tarim Basin mummies. Nature 599, 256–261 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, C.-C. et al. Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gelabert, P. et al. Genomes from Verteba cave suggest diversity within the Trypillians in Ukraine. Sci. Rep. 12, 7242 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mattila, T. M. et al. Genetic continuity, isolation, and gene flow in Stone Age Central and Eastern Europe. Commun. Biol. 6, 793 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pinhasi, R., Fernandes, D. M., Sirak, K. & Cheronet, O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat. Protoc. 14, 1194–1205 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sirak, K. A. et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. Biotechniques 62, 283–289 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci Rep. 5, 11184 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sirak, K. et al. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res. 30, 427–436 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130624 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prendergast, M. E. et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, eaaw6275 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rohland, N. et al. Three assays for in-solution enrichment of ancient human DNA at more than a million SNPs. Genome Res. 32, 2068–2078 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shinde, V. et al. An ancient Harappan genome lacks ancestry from steppe pastoralists or Iranian farmers. Cell 179, 729–735 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harney, É. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adamov, D., Gurianov, V. M., Karzhavin, S., Tagankin, V. & Urasin, V. Defining a new rate constant for Y-chromosome SNPs based on full sequencing data. Russian J. Genet. Geneal. 7, 1920–2997 (2015).


    Google Scholar
     

  • Sinnott, R. W. Virtues of the Haversine. Sky Telescope 68, 158 (1984).

    ADS 
    MATH 

    Google Scholar
     

  • Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415–423 (2005).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments