Friday, January 31, 2025
No menu items!
HomeNatureThe Ronne Ice Shelf survived the last interglacial

The Ronne Ice Shelf survived the last interglacial

  • IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2019).

  • Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dyer, B. et al. Sea-level trends across The Bahamas constrain peak last interglacial ice melt. Proc. Natl Acad. Sci. USA 118, e2026839118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumitru, O. A. et al. Last interglacial global mean sea level from high-precision U-series ages of Bahamian fossil coral reefs. Quat. Sci. Rev. 318, 108287 (2023).

    Article 

    Google Scholar
     

  • Capron, E. et al. Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quat. Sci. Rev. 103, 116–133 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the last 800,000 years. Science 317, 793–796 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sime, L. C., Wolff, E. W., Oliver, K. I. C. & Tindall, J. C. Evidence for warmer interglacials in East Antarctic ice cores. Nature 462, 342–345 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chadwick, M., Sime, L. C., Allen, C. S. & Guarino, M. V. Model-data comparison of Antarctic winter sea-ice extent and Southern Ocean sea-surface temperatures during marine isotope stage 5e. Paleoceanogr. Paleoclimatol. 38, e2022PA004600 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Golledge, N. R. et al. Retreat of the Antarctic ice sheet during the Last Interglaciation and implications for future change. Geophys. Res. Lett. 48, e2021GL094513 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 321–445 (Cambridge Univ. Press, 2019).

  • Weertman, J. Stability of the junction between an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect—threat of disaster. Nature 271, 321–325 (1978).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pattyn, F. & Morlighem, M. The uncertain future of the Antarctic ice sheet. Science 367, 1331–1335 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bulthuis, K., Arnst, M., Sun, S. & Pattyn, F. Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change. Cryosphere 13, 1349–1380 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • NEEM Community Members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Shackleton, S. et al. Global ocean heat content in the Last Interglacial. Nat. Geosci. 13, 77–81 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Goelzer, H., Huybrechts, P., Loutre, M. F. & Fichefet, T. Last Interglacial climate and sea-level evolution from a coupled ice sheet–climate model. Clim. Past 12, 2195–2213 (2016).

    Article 

    Google Scholar
     

  • Helsen, M. M., van de Berg, W. J., van de Wal, R. S. W., van den Broeke, M. R. & Oerlemans, J. Coupled regional climate–ice-sheet simulation shows limited Greenland ice loss during the Eemian. Clim. Past 9, 1773–1788 (2013).

    Article 

    Google Scholar
     

  • Quiquet, A., Ritz, C., Punge, H. J. & Salas y Mélia, D. Greenland ice sheet contribution to sea level rise during the last interglacial period: a modelling study driven and constrained by ice core data. Clim. Past 9, 353–366 (2013).

    Article 

    Google Scholar
     

  • Yau, A. M., Bender, M. L., Robinson, A. & Brook, E. J. Reconstructing the last interglacial at Summit, Greenland: insights from GISP2. Proc. Natl Acad. Sci. USA 113, 9710–9715 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnett, R. L. et al. Constraining the contribution of the Antarctic Ice Sheet to Last Interglacial sea level. Sci. Adv. 9, eadf0198 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutter, J., Gierz, P., Grosfeld, K., Thoma, M. & Lohmann, G. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophys. Res. Lett. 43, 2675–2682 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Clark, P. U. et al. Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature 577, 660–664 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lau, S. C. Y. et al. Genomic evidence for West Antarctic Ice Sheet collapse during the Last Interglacial. Science 382, 1384–1389 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Korotkikh, E. V. et al. The last interglacial as represented in the glaciochemical record from Mount Moulton Blue Ice Area, West Antarctica. Quat. Sci. Rev. 30, 1940–1947 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Steig, E. J. et al. Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate. Geophys. Res. Lett. 42, 4862–4868 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dütsch, M., Steig, E. J., Blossey, P. N. & Pauling, A. G. Response of water isotopes in precipitation to a collapse of the West Antarctic Ice Sheet in high-resolution simulations with the weather research and forecasting model. J. Clim. 36, 5417–5430 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Turney, C. S. M. et al. Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proc. Natl Acad. Sci. USA 117, 3996–4006 (2020).

  • Mulvaney, R. et al. Ice drilling on Skytrain Ice Rise and Sherman Island, Antarctica. Ann. Glaciol. 62, 311–323 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mulvaney, R. et al. The ST22 chronology for the Skytrain Ice Rise ice core. Part 2: An age model to the last interglacial and disturbed deep stratigraphy. Clim. Past 19, 851–864 (2023).

    Article 

    Google Scholar
     

  • Wolff, E. W., Rhodes, R. H. & Legrand, M. in Chemistry in the Cryosphere Vol. 3 (eds Shepson, P. B. & Domine, F.) 365–410 (World Scientific, 2021).

  • Minikin, A., Wagenbach, D., Graf, W. & Kipfstuhl, J. Spatial and seasonal variations of the snow chemistry at the central Filchner–Ronne Ice Shelf, Antarctica. Ann. Glaciol. 20, 283–290 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grieman, M. M. et al. Abrupt Holocene ice loss due to thinning and ungrounding in the Weddell Sea embayment. Nat. Geosci. 17, 227–232 (2024).

  • Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–U389 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holloway, M. D. et al. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse. Nat. Commun. 7, 12293 (2016).

  • Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. A probabilistic assessment of sea level variations within the last interglacial stage. Geophys. J. Int. 193, 711–716 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Helm, V., Humbert, A. & Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 8, 1539–1559 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Matsuoka, K. et al. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environ. Model. Softw. 140, 105015 (2021).

    Article 
    MATH 

    Google Scholar
     

  • EPICA Community Members. One-to-one hemispheric coupling of millennial polar climate variability during the last glacial. Nature 444, 195–198 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Grieman, M. M. et al. Continuous flow analysis methods for sodium, magnesium and calcium detection in the Skytrain ice core. J. Glaciol. 68, 90–100 (2021).

    Article 

    Google Scholar
     

  • Hoffmann, H. M. et al. The ST22 chronology for the Skytrain Ice Rise ice core. Part 1: A stratigraphic chronology of the last 2000 years. Clim. Past 18, 1831–1847 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Röthlisberger, R. et al. Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate. Geophys. Res. Lett. 29, 1963 (2002).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Martinerie, P., Lipenkov, V. Y. & Raynaud, D. Correction of air-content measurements in polar ice for the effect of cut bubbles at the surface of the sample. J. Glaciol. 36, 299–303 (1990).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Werner, M., Jouzel, J., Masson-Delmotte, V. & Lohmann, G. Reconciling glacial Antarctic water stable isotopes with ice sheet topography and the isotopic paleothermometer. Nat. Commun. 9, 3537 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goursaud, S. et al. Antarctic ice sheet elevation impacts on water isotope records during the Last Interglacial. Geophys. Res. Lett. 48, e2020GL091412 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martinerie, P., Raynaud, D., Etheridge, D. M., Barnola, J.-M. & Mazaudier, D. Physical and climatic parameters which influence the air content in polar ice. Earth Planet. Sci. Lett. 112, 1–13 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Stone, J. O. Air pressure and cosmogenic isotope production. J. Geophys. Res. Solid Earth 105, 23753–23759 (2000).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Pauling, A. G., Bitz, C. M. & Steig, E. J. Linearity of the climate system response to raising and lowering West Antarctic and coastal Antarctic topography. J. Clim. 36, 6195–6212 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wagenbach, D. et al. Reconnaissance of chemical and isotopic firn properties on top of Berkner Island, Antarctica. Ann. Glaciol. 20, 307–312 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Winkelmann, R. et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK). Part 1: Model description. Cryosphere 5, 715–726 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wolff, E. W. et al. Water isotope data for the full Skytrain Ice Rise ice core obtained using the CFA melt stream [dataset]. Pangaea https://doi.org/10.1594/PANGAEA.973226 (2024).

  • Wolff, E. W. et al. Water isotope data for the full Skytrain Ice Rise ice core obtained using discrete samples, and used to calculate deuterium excess [dataset]. Pangaea https://doi.org/10.1594/PANGAEA.973167 (2024).

  • Wolff, E. W. et al. Sodium and calcium data from the full Skytrain Ice Rise ice core [dataset]. Pangaea https://doi.org/10.1594/PANGAEA.973178 (2024).

  • Wolff, E. W., Nehrbass-Ahles, C., King, A. C. F. & Bauska, T. K. Total air content data for the Skytrain Ice Rise ice core [dataset]. Pangaea https://doi.org/10.1594/PANGAEA.973190 (2024).

  • Burton-Johnson, A., Black, M., Fretwell, P. T. & Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and are a estimation for the entire Antarctic continent. Cryosphere 10, 1665–1677 (2016).

  • Fischer, H. et al. Reconstruction of millennial changes in transport, dust emission and regional differences in sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth Planet. Sci. Lett. 260, 340–354 (2007).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Stenni, B. et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nat. Geosci. 4, 46–49 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles over the past 360,000 years implied by accurately dated Antarctic ice cores. Nature 448, 912–916 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Steig, E. J. et al. Synchronous climate changes in Antarctica and the North Atlantic. Science 282, 92–95 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments