Anirban, A. 15 years of topological insulators. Nat. Rev. Phys. 5, 267 (2023).
Tokura, Y. Quantum materials at the crossroads of strong correlation and topology. Nat. Mater. 1, 971–973 (2022).
Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Hasan, M. Z. et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat. Rev. Mater. 6, 784–803 (2021).
Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).
Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).
Santos-Cottin, D. et al. EuCd2As2: a magnetic semiconductor. Phys. Rev. Lett. 131, 186704 (2023).
Guo, C. et al. Temperature dependence of quantum oscillations from non-parabolic dispersions. Nat. Commun. 12, 6213 (2021).
Belopolski, I. et al. Observation of a linked-loop quantum state in a topological magnet. Nature 604, 647–652 (2022).
Collins, J. L. et al. Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature 564, 390–394 (2018).
Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).
Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).
Cheng, B. et al. Efficient terahertz harmonic generation with coherent acceleration of electrons in the Dirac semimetal Cd3As2. Phys. Rev. Lett. 124, 117402 (2020).
Kovalev, S. et al. Non-perturbative terahertz high-harmonic generation in the three-dimensional Dirac semimetal Cd3As2. Nat. Commun. 11, 2451 (2020).
Baireuther, P., Tworzydło, J., Breitkreiz, M., Adagideli, I. & Beenakker, C. W. J. Weyl-Majorana solenoid. New J. Phys. 19, 025006 (2017).
Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).
Mizuguchi, M. & Nakatsuji, S. Energy-harvesting materials based on the anomalous Nernst effect. Sci. Technol. Adv. Mater. 20, 262–275 (2019).
Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017).
Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Neto, A. H. C. Electron-electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012).
Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011).
Witczak-Krempa, W., Knap, M. & Abanin, D. Interacting Weyl semimetals: characterization via the topological Hamiltonian and its breakdown. Phys. Rev. Lett. 113, 136402 (2014).
Carlström, J. & Bergholtz, E. J. Strongly interacting Weyl semimetals: stability of the semimetallic phase and emergence of almost free fermions. Phys. Rev. B 98, 241102 (2018).
Isobe, H. & Nagaosa, N. Coulomb interaction effect in Weyl fermions with tilted energy dispersion in two dimensions. Phys. Rev. Lett. 116, 116803 (2016).
Bulmash, D., Liu, C.-X. & Qi, X.-L. Prediction of a Weyl semimetal in Hg1−x−yCdxMnyTe. Phys. Rev. B 89, 081106 (2014).
Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).
Hasan, M. Z., Xu, S.-Y., Belopolski, I. & Huang, S.-M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Matter Phys. 8, 289–309 (2017).
Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).
Belopolski, I. et al. A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases. Sci. Adv. 3, e1501692 (2017).
Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).
Nagaosa, N., Morimoto, T. & Tokura, Y. Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 5, 621–636 (2020).
Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
Okazaki, Y. et al. Quantum anomalous Hall effect with a permanent magnet defines a quantum resistance standard. Nat. Phys. 18, 25–29 (2022).
Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).
Liu, C.-X. et al. Model Hamiltonian for topological insulators. Phys. Rev. B 82, 045122 (2010).
Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).
Mogi, M. et al. Experimental signature of the parity anomaly in a semi-magnetic topological insulator. Nat. Phys. 18, 390–394 (2022).
Ong, N. P. & Liang, S. Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals. Nat. Rev. Phys. 3, 394–404 (2021).
Kandala, A., Richardella, A., Kempinger, S., Liu, C.-X. & Samarth, N. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. 6, 7434 (2015).
Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac-Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).
Onoda, S., Sugimoto, N. & Nagaosa, N. Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets. Phys. Rev. B 77, 165103 (2008).
Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).
Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).
Zhao, Y.-F. et al. Tuning the Chern number in quantum anomalous Hall insulators. Nature 588, 419–423 (2020).
Lei, C., Chen, S. & MacDonald, A. H. Magnetized topological insulator multilayers. Proc. Natl Acad. Sci. 117, 27224–27230 (2020).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).
Kresse, G. & Fürthmueller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).
Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).
Prodan, E., Hughes, T. L. & Bernevig, B. A. Entanglement spectrum of a disordered topological Chern insulator. Phys. Rev. Lett. 105, 115501 (2010).
Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl Acad. Sci. 112, 1316–1321 (2015).
Belopolski, I. et al. Source data for ‘Synthesis of a semimetallic Weyl ferromagnet with point Fermi surface’. Zenodo https://doi.org/10.5281/zenodo.13969155 (2025).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).