Thursday, January 23, 2025
No menu items!
HomeNatureCD45-PET is a robust, non-invasive tool for imaging inflammation

CD45-PET is a robust, non-invasive tool for imaging inflammation

  • Slavich, G. M. Understanding inflammation, its regulation, and relevance for health: a top scientific and public priority. Brain Behav. Immun. 45, 13–14 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Bennett, J. M., Reeves, G., Billman, G. E. & Sturmberg, J. P. Inflammation—nature’s way to efficiently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front. Med. 5, 316 (2018).

    Article 

    Google Scholar
     

  • Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Roth, G. A. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Wu, C., Li, F., Niu, G. & Chen, X. PET imaging of inflammation biomarkers. Theranostics 3, 448–466 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jamar, F. et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J. Nucl. Med. 54, 647–658 (2013).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wahl, R. L., Dilsizian, V. & Palestro, C. J. At last, 18F-FDG for inflammation and infection! J. Nucl. Med. 62, 1048–1049 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pijl, J. P. et al. Limitations and pitfalls of FDG-PET/CT in infection and inflammation. Semin. Nucl. Med. 51, 633–645 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Namavari, M. et al. Synthesis of 2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosylguanine: a novel agent for imaging T-cell activation with PET. Mol. Imaging Biol. 13, 812–818 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Levi, J. et al. Imaging of activated T cells as an early predictor of immune response to anti-PD-1 therapy. Cancer Res. 79, 3455–3465 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Derlin, T. et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. Eur. J. Nucl. Med. Mol. Imaging 45, 1934–1944 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kist de Ruijter, L. et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat. Med. 28, 2601–2610 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Farwell, M. D. et al. CD8-targeted PET imaging of tumor-infiltrating T cells in patients with cancer: a phase I first-in-humans study of 89Zr-Df-IAB22M2C, a radiolabeled anti-CD8 minibody. J. Nucl. Med. 63, 720–726 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashidian, M. et al. Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1905005116 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nigam, S. et al. Preclinical ImmunoPET imaging of glioblastoma-infiltrating myeloid cells using zirconium-89 labeled anti-CD11b antibody. Mol. Imaging Biol. 22, 685–694 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gondry, O. et al. Phase I study of [68Ga]Ga-anti-CD206-sdAb for PET/CT assessment of protumorigenic macrophage presence in solid tumors (MMR phase I). J. Nucl. Med. https://doi.org/10.2967/jnumed.122.264853 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rheinländer, A., Schraven, B. & Bommhardt, U. CD45 in human physiology and clinical medicine. Immunol. Lett. 196, 22–32 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Rossotti, M. et al. Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells. Biochim. Biophys. Acta 1850, 1397–1404 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ren, J. et al. Induced CD45 proximity potentiates natural killer cell receptor antagonism. ACS Synth. Biol. 11, 3426–3439 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Teunissen, A. J. P. et al. Employing nanobodies for immune landscape profiling by PET imaging in mice. STAR Protoc. 2, 100434 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rashidian, M. et al. Noninvasive imaging of immune responses. Proc. Natl Acad. Sci. USA 112, 6146–6151 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rashidian, M. et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J. Exp. Med. 214, 2243–2255 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Van Elssen, C. H. M. J. et al. Noninvasive imaging of human immune responses in a human xenograft model of graft-versus-host disease. J. Nucl. Med. 58, 1003–1008 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pauwels, R. A. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am. J. Respir. Crit. Care Med. 163, 1256–1276 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cottin, V. Lung biopsy in interstitial lung disease: balancing the risk of surgery and diagnostic uncertainty. Eur. Respir. J. 48, 1274–1277 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Khadangi, F. et al. Intranasal versus intratracheal exposure to lipopolysaccharides in a murine model of acute respiratory distress syndrome. Sci. Rep. 11, 7777 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Matute-Bello, G. et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 44, 725–738 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claesson-Welsh, L. Vascular permeability—the essentials. Ups. J. Med. Sci. 120, 135–143 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Prost, N. et al. 18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome. J. Nucl. Med. 55, 1871–1877 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rodrigues, R. S. et al. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury. Nucl. Med. Biol. 48, 52–62 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Sullivan, K. E. et al. The role of inflammation in cancer of the esophagus. Expert Rev. Gastroenterol. Hepatol. 8, 749–760 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Negreanu, L. et al. Endoscopy in inflammatory bowel disease: from guidelines to real life. Ther. Adv. Gastroenterol. 12, 1756284819865153 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Molinié, F. et al. Opposite evolution in incidence of Crohn’s disease and ulcerative colitis in Northern France (1988–1999). Gut 53, 843–848 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dmochowska, N., Wardill, H. R. & Hughes, P. A. Advances in imaging specific mediators of inflammatory bowel disease. Int. J. Mol. Sci. 19, 2471 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. https://doi.org/10.1002/0471142735.im1525s104 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemberg, D. A. et al. Positron emission tomography in the investigation of pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 11, 733–738 (2005).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Cronin, C. G. et al. Utility of positron emission tomography/CT in the evaluation of small bowel pathology. Br. J. Radiol. 85, 1211–1221 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bettenworth, D. et al. Translational 18F-FDG PET/CT imaging to monitor lesion activity in intestinal inflammation. J. Nucl. Med. 54, 748–755 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuazon, S. A. et al. 90Y-labeled anti-CD45 antibody allogeneic hematopoietic cell transplantation for high-risk multiple myeloma. Bone Marrow Transplant. 56, 202–209 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khoury, H. J. et al. Improved survival after acute graft-versus-host disease diagnosis in the modern era. Haematologica 102, 958–966 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Aslanian, H. et al. Prospective evaluation of acute graft-versus-host disease. Dig. Dis. Sci. 57, 720–725 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Naserian, S. et al. Simple, reproducible, and efficient clinical grading system for murine models of acute graft-versus-host disease. Front. Immunol. 9, 10 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zamoyska, R. Why is there so much CD45 on T cells? Immunity 27, 421–423 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandenburg, S. et al. Myeloid cells expressing high level of CD45 are associated with a distinct activated phenotype in glioma. Immunol. Res. 65, 757–768 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ahmed, M. G. T. et al. Differential regulation of CD45 expression on granulocytes, lymphocytes, and monocytes in COVID-19. J. Clin. Med. 11, 4219 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vo, P. et al. Yttrium-90-labeled anti-CD45 antibody followed by a reduced-intensity hematopoietic cell transplantation for patients with relapsed/refractory leukemia or myelodysplasia. Haematologica 105, 1731–1737 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagel, J. M. et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood 114, 5444–5453 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stepanova, V. M. et al. Targeting CD45 by gene-edited CAR T cells for leukemia eradication and hematopoietic stem cell transplantation preconditioning. Mol. Ther. Oncol. 32, 200843 (2024).

  • Abousaway, O., Rakhshandehroo, T., Van den Abbeele, A. D., Kircher, M. F. & Rashidian, M. Noninvasive imaging of cancer immunotherapy. Nanotheranostics 5, 90–112 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y., Tang, L., Mabardi, L., Kumari, S. & Irvine, D. J. Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or non-internalizing receptors. ACS Nano 11, 3089–3100 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayer, M. et al. Imaging atherosclerosis by PET, with emphasis on the role of FDG and NaF as potential biomarkers for this disorder. Front. Physiol. 11, 511391 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larson, S. R. et al. Characterization of a highly effective preparation for suppression of myocardial glucose utilization. J. Nucl. Cardiol. 27, 849–861 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Osborne, M. T. & Divakaran, S. Seeking clarity: insights from a highly effective preparation protocol for suppressing myocardial glucose uptake for PET imaging of cardiac inflammation. J. Nucl. Cardiol. 27, 862–864 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Woudstra, L. et al. CD45 is a more sensitive marker than CD3 to diagnose lymphocytic myocarditis in the endomyocardium. Hum. Pathol. 62, 83–90 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Soret, M., Bacharach, S. L. & Buvat, I. Partial-volume effect in PET tumor imaging. J. Nucl. Med. 48, 932–945 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Divakaran, S. et al. Diagnostic accuracy of advanced imaging in cardiac sarcoidosis. Circ. Cardiovasc. Imaging 12, e008975 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Guo, W. et al. PET/CT-guided percutaneous biopsy of FDG-avid metastatic bone lesions in patients with advanced lung cancer: a safe and effective technique. Eur. J. Nucl. Med. Mol. Imaging 44, 25–32 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castilla-Llorente, C. et al. Prognostic factors and outcomes of severe gastrointestinal GVHD after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 49, 966–971 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jeong, H.-J., Abhiraman, G. C., Story, C. M., Ingram, J. R. & Dougan, S. K. Generation of Ca2+-independent sortase A mutants with enhanced activity for protein and cell surface labeling. PLoS ONE 12, e0189068 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vosjan, M. J. W. D. et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc. 5, 739–743 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. J., Shajib, M. S., Manocha, M. M. & Khan, W. I. Investigating intestinal inflammation in DSS-induced model of IBD. J. Vis. Exp. https://doi.org/10.3791/3678 (2012).

  • Rahimi Koshkaki, H. et al. Immunohistochemical characterization of immune infiltrate in tumor microenvironment of glioblastoma. J. Pers. Med. 10, 112 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Freise, A. C. et al. Immuno-PET in inflammatory bowel disease: imaging CD4-positive T cells in a murine model of colitis. J. Nucl. Med. 59, 980–985 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments