Slavich, G. M. Understanding inflammation, its regulation, and relevance for health: a top scientific and public priority. Brain Behav. Immun. 45, 13–14 (2015).
Bennett, J. M., Reeves, G., Billman, G. E. & Sturmberg, J. P. Inflammation—nature’s way to efficiently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front. Med. 5, 316 (2018).
Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).
Roth, G. A. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).
Wu, C., Li, F., Niu, G. & Chen, X. PET imaging of inflammation biomarkers. Theranostics 3, 448–466 (2013).
Jamar, F. et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J. Nucl. Med. 54, 647–658 (2013).
Wahl, R. L., Dilsizian, V. & Palestro, C. J. At last, 18F-FDG for inflammation and infection! J. Nucl. Med. 62, 1048–1049 (2021).
Pijl, J. P. et al. Limitations and pitfalls of FDG-PET/CT in infection and inflammation. Semin. Nucl. Med. 51, 633–645 (2021).
Namavari, M. et al. Synthesis of 2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosylguanine: a novel agent for imaging T-cell activation with PET. Mol. Imaging Biol. 13, 812–818 (2011).
Levi, J. et al. Imaging of activated T cells as an early predictor of immune response to anti-PD-1 therapy. Cancer Res. 79, 3455–3465 (2019).
Derlin, T. et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. Eur. J. Nucl. Med. Mol. Imaging 45, 1934–1944 (2018).
Kist de Ruijter, L. et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat. Med. 28, 2601–2610 (2022).
Farwell, M. D. et al. CD8-targeted PET imaging of tumor-infiltrating T cells in patients with cancer: a phase I first-in-humans study of 89Zr-Df-IAB22M2C, a radiolabeled anti-CD8 minibody. J. Nucl. Med. 63, 720–726 (2022).
Rashidian, M. et al. Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1905005116 (2019).
Nigam, S. et al. Preclinical ImmunoPET imaging of glioblastoma-infiltrating myeloid cells using zirconium-89 labeled anti-CD11b antibody. Mol. Imaging Biol. 22, 685–694 (2020).
Gondry, O. et al. Phase I study of [68Ga]Ga-anti-CD206-sdAb for PET/CT assessment of protumorigenic macrophage presence in solid tumors (MMR phase I). J. Nucl. Med. https://doi.org/10.2967/jnumed.122.264853 (2023).
Rheinländer, A., Schraven, B. & Bommhardt, U. CD45 in human physiology and clinical medicine. Immunol. Lett. 196, 22–32 (2018).
Rossotti, M. et al. Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells. Biochim. Biophys. Acta 1850, 1397–1404 (2015).
Ren, J. et al. Induced CD45 proximity potentiates natural killer cell receptor antagonism. ACS Synth. Biol. 11, 3426–3439 (2022).
Teunissen, A. J. P. et al. Employing nanobodies for immune landscape profiling by PET imaging in mice. STAR Protoc. 2, 100434 (2021).
Rashidian, M. et al. Noninvasive imaging of immune responses. Proc. Natl Acad. Sci. USA 112, 6146–6151 (2015).
Rashidian, M. et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J. Exp. Med. 214, 2243–2255 (2017).
Van Elssen, C. H. M. J. et al. Noninvasive imaging of human immune responses in a human xenograft model of graft-versus-host disease. J. Nucl. Med. 58, 1003–1008 (2017).
Pauwels, R. A. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am. J. Respir. Crit. Care Med. 163, 1256–1276 (2001).
Cottin, V. Lung biopsy in interstitial lung disease: balancing the risk of surgery and diagnostic uncertainty. Eur. Respir. J. 48, 1274–1277 (2016).
Khadangi, F. et al. Intranasal versus intratracheal exposure to lipopolysaccharides in a murine model of acute respiratory distress syndrome. Sci. Rep. 11, 7777 (2021).
Matute-Bello, G. et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 44, 725–738 (2011).
Claesson-Welsh, L. Vascular permeability—the essentials. Ups. J. Med. Sci. 120, 135–143 (2015).
de Prost, N. et al. 18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome. J. Nucl. Med. 55, 1871–1877 (2014).
Rodrigues, R. S. et al. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury. Nucl. Med. Biol. 48, 52–62 (2017).
O’Sullivan, K. E. et al. The role of inflammation in cancer of the esophagus. Expert Rev. Gastroenterol. Hepatol. 8, 749–760 (2014).
Negreanu, L. et al. Endoscopy in inflammatory bowel disease: from guidelines to real life. Ther. Adv. Gastroenterol. 12, 1756284819865153 (2019).
Molinié, F. et al. Opposite evolution in incidence of Crohn’s disease and ulcerative colitis in Northern France (1988–1999). Gut 53, 843–848 (2004).
Dmochowska, N., Wardill, H. R. & Hughes, P. A. Advances in imaging specific mediators of inflammatory bowel disease. Int. J. Mol. Sci. 19, 2471 (2018).
Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. https://doi.org/10.1002/0471142735.im1525s104 (2014).
Lemberg, D. A. et al. Positron emission tomography in the investigation of pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 11, 733–738 (2005).
Cronin, C. G. et al. Utility of positron emission tomography/CT in the evaluation of small bowel pathology. Br. J. Radiol. 85, 1211–1221 (2012).
Bettenworth, D. et al. Translational 18F-FDG PET/CT imaging to monitor lesion activity in intestinal inflammation. J. Nucl. Med. 54, 748–755 (2013).
Tuazon, S. A. et al. 90Y-labeled anti-CD45 antibody allogeneic hematopoietic cell transplantation for high-risk multiple myeloma. Bone Marrow Transplant. 56, 202–209 (2021).
Khoury, H. J. et al. Improved survival after acute graft-versus-host disease diagnosis in the modern era. Haematologica 102, 958–966 (2017).
Aslanian, H. et al. Prospective evaluation of acute graft-versus-host disease. Dig. Dis. Sci. 57, 720–725 (2012).
Naserian, S. et al. Simple, reproducible, and efficient clinical grading system for murine models of acute graft-versus-host disease. Front. Immunol. 9, 10 (2018).
Zamoyska, R. Why is there so much CD45 on T cells? Immunity 27, 421–423 (2007).
Brandenburg, S. et al. Myeloid cells expressing high level of CD45 are associated with a distinct activated phenotype in glioma. Immunol. Res. 65, 757–768 (2017).
Ahmed, M. G. T. et al. Differential regulation of CD45 expression on granulocytes, lymphocytes, and monocytes in COVID-19. J. Clin. Med. 11, 4219 (2022).
Vo, P. et al. Yttrium-90-labeled anti-CD45 antibody followed by a reduced-intensity hematopoietic cell transplantation for patients with relapsed/refractory leukemia or myelodysplasia. Haematologica 105, 1731–1737 (2020).
Pagel, J. M. et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood 114, 5444–5453 (2009).
Stepanova, V. M. et al. Targeting CD45 by gene-edited CAR T cells for leukemia eradication and hematopoietic stem cell transplantation preconditioning. Mol. Ther. Oncol. 32, 200843 (2024).
Abousaway, O., Rakhshandehroo, T., Van den Abbeele, A. D., Kircher, M. F. & Rashidian, M. Noninvasive imaging of cancer immunotherapy. Nanotheranostics 5, 90–112 (2021).
Zheng, Y., Tang, L., Mabardi, L., Kumari, S. & Irvine, D. J. Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or non-internalizing receptors. ACS Nano 11, 3089–3100 (2017).
Mayer, M. et al. Imaging atherosclerosis by PET, with emphasis on the role of FDG and NaF as potential biomarkers for this disorder. Front. Physiol. 11, 511391 (2020).
Larson, S. R. et al. Characterization of a highly effective preparation for suppression of myocardial glucose utilization. J. Nucl. Cardiol. 27, 849–861 (2020).
Osborne, M. T. & Divakaran, S. Seeking clarity: insights from a highly effective preparation protocol for suppressing myocardial glucose uptake for PET imaging of cardiac inflammation. J. Nucl. Cardiol. 27, 862–864 (2020).
Woudstra, L. et al. CD45 is a more sensitive marker than CD3 to diagnose lymphocytic myocarditis in the endomyocardium. Hum. Pathol. 62, 83–90 (2017).
Soret, M., Bacharach, S. L. & Buvat, I. Partial-volume effect in PET tumor imaging. J. Nucl. Med. 48, 932–945 (2007).
Divakaran, S. et al. Diagnostic accuracy of advanced imaging in cardiac sarcoidosis. Circ. Cardiovasc. Imaging 12, e008975 (2019).
Guo, W. et al. PET/CT-guided percutaneous biopsy of FDG-avid metastatic bone lesions in patients with advanced lung cancer: a safe and effective technique. Eur. J. Nucl. Med. Mol. Imaging 44, 25–32 (2017).
Castilla-Llorente, C. et al. Prognostic factors and outcomes of severe gastrointestinal GVHD after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 49, 966–971 (2014).
Jeong, H.-J., Abhiraman, G. C., Story, C. M., Ingram, J. R. & Dougan, S. K. Generation of Ca2+-independent sortase A mutants with enhanced activity for protein and cell surface labeling. PLoS ONE 12, e0189068 (2017).
Vosjan, M. J. W. D. et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc. 5, 739–743 (2010).
Kim, J. J., Shajib, M. S., Manocha, M. M. & Khan, W. I. Investigating intestinal inflammation in DSS-induced model of IBD. J. Vis. Exp. https://doi.org/10.3791/3678 (2012).
Rahimi Koshkaki, H. et al. Immunohistochemical characterization of immune infiltrate in tumor microenvironment of glioblastoma. J. Pers. Med. 10, 112 (2020).
Freise, A. C. et al. Immuno-PET in inflammatory bowel disease: imaging CD4-positive T cells in a murine model of colitis. J. Nucl. Med. 59, 980–985 (2018).