Thursday, January 23, 2025
No menu items!
HomeNatureResolving native GABAA receptor structures from the human brain

Resolving native GABAA receptor structures from the human brain

  • Olsen, R. W. & Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60, 243–260 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sieghart, W. & Savic, M. M. International Union of Basic and Clinical Pharmacology. CVI: GABAA receptor subtype- and function-selective ligands: key issues in translation to humans. Pharmacol. Rev. 70, 836–878 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsen, R. W. & Sieghart, W. GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56, 141–148 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, J. J. & Hibbs, R. E. Direct structural insights into GABAA receptor pharmacology. Trends Biochem. Sci. 46, 502–517 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sente, A. et al. Differential assembly diversifies GABAA receptor structures and signalling. Nature 604, 190–194 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasaragod, V. B. et al. The molecular basis of drug selectivity for alpha5 subunit-containing GABAA receptors. Nat. Struct. Mol. Biol. 30, 1936–1946 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cowgill, J. et al. Structure and dynamics of differential ligand binding in the human rho-type GABAA receptor. Neuron 111, 3450–3464.e3455 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sun, C., Zhu, H., Clark, S. & Gouaux, E. Cryo-EM structures reveal native GABAA receptor assemblies and pharmacology. Nature 622, 195–201 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nutt, D. GABAA receptors: subtypes, regional distribution, and function. J. Clin. Sleep Med. 2, S7–S11 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Chuang, S. H. & Reddy, D. S. Genetic and molecular regulation of extrasynaptic GABAA receptors in the brain: therapeutic insights for epilepsy. J. Pharmacol. Exp. Ther. 364, 180–197 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sigel, E. & Steinmann, M. E. Structure, function, and modulation of GABAA receptors. J. Biol. Chem. 287, 40224–40231 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mihic, S. J. & Harris, R. A. GABA and the GABAA receptor. Alcohol Health Res, World 21, 127–131 (1997).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W. & Sperk, G. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101, 815–850 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Loup, F. et al. A highly sensitive immunofluorescence procedure for analyzing the subcellular distribution of GABAA receptor subunits in the human brain. J. Histochem. Cytochem. 46, 1129–1139 (1998).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sperk, G. et al. Immunohistochemical distribution of 10 GABAA receptor subunits in the forebrain of the rhesus monkey Macaca mulatta. J. Comp. Neurol. 528, 2551–2568 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stefanits, H. et al. GABAA receptor subunits in the human amygdala and hippocampus: Immunohistochemical distribution of 7 subunits. J. Comp. Neurol. 526, 324–348 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martenson, J. S., Yamasaki, T., Chaudhury, N. H., Albrecht, C. & Tomita, S. Assembly rules for GABAA receptor complexes in the brain. eLife 6, e27443 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C. et al. Neurexins physically and functionally interact with GABAA receptors. Neuron 66, 403–416 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, Y. T. et al. Mesophasic organization of GABAA receptors in hippocampal inhibitory synapses. Nat. Neurosci. 23, 1589–1596 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tretter, V. et al. Gephyrin, the enigmatic organizer at GABAergic synapses. Front. Cell Neurosci. 6, 23 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Spencer, D. & Burchiel, K. Selective amygdalohippocampectomy. Epilepsy Res. Treat. 2012, 382095 (2012).

    PubMed 

    Google Scholar
     

  • Zhu, S. et al. Structure of a human synaptic GABAA receptor. Nature 559, 67–72 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yamasaki, T., Hoyos-Ramirez, E., Martenson, J. S., Morimoto-Tomita, M. & Tomita, S. GARLH family proteins stabilize GABAA receptors at synapses. Neuron 93, 1138–1152.e1136 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bencsits, E., Ebert, V., Tretter, V. & Sieghart, W. A significant part of native γ-aminobutyric acidA receptors containing α4 subunits do not contain γ or δ subunits. J. Biol. Chem. 274, 19613–19616 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benke, D. et al. Analysis of the presence and abundance of GABAA receptors containing two different types of α subunits in murine brain using point-mutated α subunits. J. Biol. Chem. 279, 43654–43660 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mertens, S., Benke, D. & Mohler, H. GABAA receptor populations with novel subunit combinations and drug binding profiles identified in brain by α5- and δ-subunit-specific immunopurification. J. Biol. Chem. 268, 5965–5973 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholze, P. et al. Two distinct populations of α1α6-containing GABAA-receptors in rat cerebellum. Front. Synaptic Neurosci. 12, 591129 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, S. et al. One-step construction of circularized nanodiscs using SpyCatcher–SpyTag. Nat. Commun. 12, 5451 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dalal, V. et al. Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel. Nat. Commun. 15, 25 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Engin, E., Liu, J. & Rudolph, U. alpha2-containing GABAA receptors: a target for the development of novel treatment strategies for CNS disorders. Pharmacol. Ther. 136, 142–152 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nguyen, Q. A. & Nicoll, R. A. The GABAA receptor β subunit is required for inhibitory transmission. Neuron 98, 718–725 e713 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jensen, M. L. et al. The β subunit determines the ion selectivity of the GABAA receptor. J. Biol. Chem. 277, 41438–41447 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uygun, D. S. et al. Knockdown of GABAA α3 subunits on thalamic reticular neurons enhances deep sleep in mice. Nat. Commun. 13, 2246 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dias, R. et al. Evidence for a significant role of α3-containing GABAA receptors in mediating the anxiolytic effects of benzodiazepines. J. Neurosci. 25, 10682–10688 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Saras, A. et al. Histamine action on vertebrate GABAA receptors: direct channel gating and potentiation of GABA responses. J. Biol. Chem. 283, 10470–10475 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sigel, E. & Ernst, M. The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol. Sci. 39, 659–671 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, J. J. et al. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 585, 303–308 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Masiulis, S. et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 565, 454–459 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhu, S. et al. Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities. Nat. Commun. 13, 4582 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ramerstorfer, J. et al. The GABAA receptor α+β− interface: a novel target for subtype selective drugs. J. Neurosci. 31, 870–877 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varagic, Z. et al. Identification of novel positive allosteric modulators and null modulators at the GABAA receptor α+β− interface. Br. J. Pharmacol. 169, 371–383 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortensen, M. et al. Forty Years searching for neurosteroid binding sites on GABAA receptors. Neuroscience https://doi.org/10.1016/j.neuroscience.2024.06.002 (2024).

  • Legesse, D. H. et al. Structural insights into opposing actions of neurosteroids on GABAA receptors. Nat. Commun. 14, 5091 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tonon, M. C. et al. Endozepines and their receptors: structure, functions and pathophysiological significance. Pharmacol. Ther. 208, 107386 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bormann, J. Electrophysiological characterization of diazepam binding inhibitor (DBI) on GABAA receptors. Neuropharmacology 30, 1387–1389 (1991).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Everlien, I. et al. Diazepam binding inhibitor governs neurogenesis of excitatory and inhibitory neurons during embryonic development via GABA signaling. Neuron 110, 3139–3153.e3136 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sanchez, J. D., Gomez-Carpintero, J., Gonzalez, J. F. & Menendez, J. C. Twenty-first century antiepileptic drugs. An overview of their targets and synthetic approaches. Eur. J. Med. Chem. 272, 116476 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Devenish, S. O. et al. The anticonvulsant zonisamide positively modulates recombinant and native glycine receptors at clinically relevant concentrations. Neuropharmacology 182, 108371 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. The mechanism of carbamazepine aggravation of absence seizures. J. Pharmacol. Exp. Ther. 319, 790–798 (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zheng, T. et al. Oxcarbazepine, not its active metabolite, potentiates GABAA activation and aggravates absence seizures. Epilepsia 50, 83–87 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hammer, H., Ebert, B., Jensen, H. S. & Jensen, A. A. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABAA receptors expressed in Xenopus laevis oocytes. PLoS ONE 10, e0120239 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gauthier, A. C. & Mattson, R. H. Clobazam: a safe, efficacious, and newly rediscovered therapeutic for epilepsy. CNS Neurosci. Ther. 21, 543–548 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reimers, A. et al. Reference ranges for antiepileptic drugs revisited: a practical approach to establish national guidelines. Drug Des. Dev. Ther. 12, 271–280 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Tomita, S. Molecular constituents and localization of the ionotropic GABA receptor complex in vivo. Curr. Opin. Neurobiol. 57, 81–86 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ge, J. et al. Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. eLife 7, e38770 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skolnick, P. Anxioselective anxiolytics: on a quest for the Holy Grail. Trends Pharmacol. Sci. 33, 611–620 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pandya, M. et al. Sex- and age-related changes in GABA signaling components in the human cortex. Biol. Sex Differ. 10, 5 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ethiraj, J. et al. The effect of age and sex on the expression of GABA signaling components in the human hippocampus and entorhinal cortex. Sci Rep. 11, 21470 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chameh, H. M. et al. Distinctive biophysical features of human cell-types: insights from studies of neurosurgically resected brain tissue. Front. Synaptic Neurosci. 15, 1250834 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Engin, E. GABAA receptor subtypes and benzodiazepine use, misuse, and abuse. Front. Psychiatry 13, 1060949 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360, 376 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chojnacka, W., Teng, J., Kim, J. J., Jensen, A. A. & Hibbs, R. E. Structural insights into GABAA receptor potentiation by Quaalude. Nat. Commun. 15, 5244 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowarz, E., Loscher, D. & Marschalek, R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Smart, O.S. et al. Grade2 v.1.6.0. (Global Phasing Ltd., 2021).

  • Laverty, D. et al. Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature 565, 516–520 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments