Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).
Du, X., Belegundu, U. & Uchino, K. Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: theoretical expectation for thin films. Jpn. J. Appl. Phys. 36, 5580–5587 (1997).
Li, J. Y., Rogan, R. C., Üstündag, E. & Bhattacharya, K. Domain switching in polycrystalline ferroelectric ceramics. Nat. Mater. 4, 776–781 (2005).
Hall, D. A., Steuwer, A., Cherdhirunkorn, B., Mori, T. & Withers, P. J. Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics. Acta Mater. 54, 3075 (2006).
Jones, J. L., Hoffman, M. & Bowman, K. J. Saturated domain switching textures and strains in ferroelastic ceramics. J. Appl. Phys. 98, 024115 (2005).
Oddershede, J., Hossain, M. J. & Daniels, J. E. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramic. Appl. Phys. Lett. 109, 092901 (2016).
Hao, J., Li, W., Zhai, J. & Chen, H. Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng.: R: Rep. 135, 1–57 (2019).
Huang Fu, G. et al. Giant electric field–induced strain in lead-free piezoceramics. Science 378, 1125–1130 (2022).
Lai, L. et al. Giant electrostrain in leadfree textured piezoceramics by defect dipole design. Adv. Mater. 35, 2300519 (2023).
Wang, B., Huangfu, G., Zheng, Z. & Guo, Y. Giant electric field-induced strain with high temperature-stability in textured KNN-based piezoceramics for actuator applications. Adv. Funct. Mater. 33, 221464 (2023).
Feng, W. et al. Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric. Nat. Commun. 13, 5086 (2022).
Luo, H. et al. Achieving giant electrostrain of above 1% in (Bi,Na)TiO3-based lead-free piezoelectrics via introducing oxygen-defect composition. Sci. Adv. 9, 7078 (2023).
Jia, Y. et al. Giant electro-induced strain in lead-free relaxor ferroelectrics via defect engineering. J. Eur. Ceram. Soc. 43, 947 (2023).
Li, W. et al. Giant electro-strain nearly 1% in BiFeO3-based lead-free piezoelectric ceramics through coupling morphotropic phase boundary with defect engineering. Mater. Today Chem. 26, 101237 (2022).
Narayan, B. et al. Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nat. Mater. 17, 427 (2018).
Adhikary, G. D., Singh, D. N., Tina, G. A., Muleta, G. J. & Ranjan, R. Ultrahigh electrostrain >1% in lead-free piezoceramics: role of disk dimension. J. Appl. Phys. 134, 054101 (2023).
He, X. et al. Ultra-large electromechanical deformation in lead-free piezoceramics at reduced thickness. Mater. Horiz. 11, 1079–1087 (2024).
Wang, J., Wang, B., Zhang, H., Zhang, S. & Guo, Y. Ultrahigh electrobending deformation in lead-free piezoelectric ceramics via defect concentration gradient design. Adv. Mater. 36, e2404682 (2024).
Paterson, A. R. et al. Relaxor-ferroelectric transitions: sodium bismuth titanate derivatives. MRS Bull. 43, 600–606 (2018).
Holgado, J. P., Munuera, G., Espinós, J. P. & González-Elipe, A. R. XPS study of oxidation processes of CeOx defective layers. Appl. Surf. Sci. 158, 164–171 (2000).
Hanzig, J. et al. Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature. Phys. Rev. B 88, 024104 (2013).
Khanbabaee, B. et al. Large piezoelectricity in electric-field modified single crystals of SrTiO3. Appl. Phys. Lett. 109, 222901 (2016).
He, L. & Vandebilt, D. First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68, 134103 (2003).
Kitanaka, Y., Noguchi, Y. & Miyayama, M. Oxygen-vacancy-induced 90°-domain clamping in ferroelectric Bi4Ti3O12 single crystals. Phys. Rev. B 81, 094114 (2010).
Pramanick, A., Damjanvic, D., Daniels, J. E., Nino, J. C. & Jones, J. L. Origins of electromechanical coupling in polycrystalline ferroelectrics during subcoercive electric loading. J. Am. Ceram. Soc. 94, 293 (2011).
Vaughan, G. B. et al. ID15A at the ESRF–a beamline for high speed operando X-ray diffraction, diffraction tomography and total scattering. J. Synchrotron Radiat. 27, 515 (2020).
Raimondi, P. et al. The extremely brilliant source storage ring of the European Synchrotron Radiation Facility. Commun. Phys. 6, 82 (2023).
Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510 (2015).