Shapin, S. The Scientific Revolution 2nd edn (Univ. Chicago Press, 2018).
Hawkes, P. W. & Spence, J. C. H. (eds) Springer Handbook of Microscopy (Springer, 2019).
Crystallography at 100. Science 343 (Special issue), 1091–1116 (2014).
Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999). This paper reports on the experimental demonstration of unifying crystallography and microscopy by replacing the physical lens with coherent diffraction and computational algorithms.
Sayre, D. in Imaging Processes and Coherence in Physics Vol. 112 (eds Schlenker, M. et al.) 229–235 (Springer, 1980).
Millane, R. P. Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7, 394–411 (1990).
Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).
Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982). This was the development of error-reduction and input–output algorithms for iterative phase retrieval.
Bates, R. H. T. Fourier phase problems are uniquely solvable in more than one dimension. I: Underlying theory. Optik 61, 247–262 (1982).
Miao, J., Sayre, D. & Chapman, H. N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 15, 1662–1669 (1998). The oversampling ratio was introduced; phase retrieval requires more independently measured points than unknown variables.
Willmott, P. An Introduction to Synchrotron Radiation: Techniques and Applications 2nd edn (Wiley, 2019).
Boyle, W. S. & Smith, G. E. Charge coupled semiconductor devices. Bell Syst. Tech. J. 49, 587–593 (1970).
Robinson, I. K. & Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291–298 (2009).
Chapman, H. N. & Nugent, K. A. Coherent lensless X-ray imaging. Nat. Photon. 4, 833–839 (2010).
Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. Beyond crystallography: diffractive imaging using coherent x-ray light sources. Science 348, 530–535 (2015).
Shechtman, Y. et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32, 87–109 (2015).
Pfeiffer, F. X-ray ptychography. Nat. Photon. 12, 9–17 (2018).
Rodenburg, J. & Maiden, A. in Springer Handbook of Microscopy (eds Hawkes, P. W. & Spence, J. C. H.) 819–904 (Springer, 2019).
Zheng, G., Shen, C., Jiang, S., Song, P. & Yang, C. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 3, 207–223 (2021).
Spence, J. C. H., Howells, M., Marks, L. D. & Miao, J. Lensless imaging: a workshop on “new approaches to the phase problem for non-periodic objects”. Ultramicroscopy 90, 1–6 (2001).
Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018). Electron ptychography with EMPAD at 0.39 Å resolution is better than aberration-corrected electron microscopy under the same imaging conditions.
Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).
Yang, W., Sha, H., Cui, J., Mao, L. & Yu, R. Local-orbital ptychography for ultrahigh-resolution imaging. Nat. Nanotechnol. 19, 612–617 (2024).
Nguyen, K. X. et al. Achieving sub-0.5-angstrom–resolution ptychography in an uncorrected electron microscope. Science 383, 865–870 (2024).
Dong, Z. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ. Nature 630, 847–852 (2024). Multislice ptychography combined with electron energy-loss spectroscopy reveals oxygen vacancies in a high-Tc superconductor (La3Ni2O7−δ) and correlates nanoscale stoichiometry with electronic structure.
Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328–331 (2017). This paper reveals the development of X-ray vector ptychographic tomography for the 3D imaging of magnetic configurations around Bloch point singularities.
Donnelly, C. et al. Time-resolved imaging of three-dimensional nanoscale magnetization dynamics. Nat. Nanotechnol. 15, 356–360 (2020).
Rana, A. et al. Three-dimensional topological magnetic monopoles and their interactions in a ferromagnetic meta-lattice. Nat. Nanotechnol. 18, 227–232 (2023).
Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).
Csernica, P. M. et al. Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 6, 642–652 (2021).
Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022). In situ BCDI reveals that severe lattice strain accumulation in Li- and Mn-rich cathodes during cycling drives structural degradation and oxygen loss.
Deng, H. D. et al. Correlative image learning of chemo-mechanics in phase-transforming solids. Nat. Mater. 21, 547–554 (2022).
Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon. 7, 739–745 (2013). Fourier ptychography was demonstrated by capturing a series of low-resolution intensity images to generate a wide-field, high-resolution complex-valued image.
Bosch, C. et al. Non-destructive X-ray tomography of brain tissue ultrastructure. Preprint at bioRxiv https://doi.org/10.1101/2023.11.16.567403 (2023).
Dierolf, M. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010).
Clark, J. N. et al. Three-dimensional imaging of dislocation propagation during crystal growth and dissolution. Nat. Mater. 14, 780–784 (2015).
Lo, Y. H. et al. X-ray linear dichroic ptychography. Proc. Natl Acad. Sci. USA 118, e2019068118 (2021).
Marrison, J., Räty, L., Marriott, P. & O’Toole, P. Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information. Sci Rep. 3, 2369 (2013).
Tian, L. et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica 2, 904–911 (2015).
Sun, J., Zuo, C., Zhang, L. & Chen, Q. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations. Sci Rep. 7, 1187 (2017).
Zuo, C., Sun, J., Li, J., Asundi, A. & Chen, Q. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng. 128, 106003 (2020).
Miao, J. et al. Imaging whole Escherichia coli bacteria by using single particle x-ray diffraction. Proc. Natl Acad. Sci. USA 100, 110–112 (2003).
Shapiro, D. et al. Biological imaging by soft x-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 102, 15343–15346 (2005).
Giewekemeyer, K. et al. Quantitative biological imaging by ptychographic x-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 107, 529–534 (2010).
Jiang, H. et al. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 107, 11234–11239 (2010).
Deng, J. et al. Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. Sci. Adv. 4, eaau4548 (2018).
Song, C. et al. Quantitative imaging of single, unstained viruses with coherent X-rays. Phys. Rev. Lett. 101, 158101 (2008).
Seibert, M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–81 (2011).
Ekeberg, T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys. Rev. Lett. 114, 098102 (2015).
Hosseinizadeh, A. et al. Conformational landscape of a virus by single-particle X-ray scattering. Nat. Methods 14, 877–881 (2017).
Pei, X. et al. Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer. Nat. Commun. 14, 3027 (2023).
Ayyer, K. et al. Macromolecular diffractive imaging using imperfect crystals. Nature 530, 202–206 (2016).
Küçükoğlu, B. et al. Low-dose cryo-electron ptychography of proteins at sub-nanometer resolution. Nat. Commun. 15, 8062 (2024).
Jacobsen, C. X-Ray Microscopy (Cambridge Univ. Press, 2019).
Fannjiang, A. & Strohmer, T. The numerics of phase retrieval. Acta Numer. 29, 125–228 (2020).
Dong, J. et al. Phase retrieval: from computational imaging to machine learning: a tutorial. IEEE Signal Process. Mag. 40, 45–57 (2023).
Chen, Z. et al. Lorentz electron ptychography for imaging magnetic textures beyond the diffraction limit. Nat. Nanotechnol. 17, 1165–1170 (2022).
Klose, C. et al. Coherent correlation imaging for resolving fluctuating states of matter. Nature 614, 256–261 (2023).
Zayko, S. et al. Ultrafast high-harmonic nanoscopy of magnetization dynamics. Nat. Commun. 12, 6337 (2021).
Gomez, L. F. et al. Shapes and vorticities of superfluid helium nanodroplets. Science 345, 906–909 (2014).
Johnson, A. S. et al. Ultrafast X-ray imaging of the light-induced phase transition in VO2. Nat. Phys. 19, 215–220 (2023).
Michelson, A. et al. Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks. Science 376, 203–207 (2022).
Xu, R. et al. Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses. Nat. Commun. 5, 4061 (2014).
Holler, M. et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543, 402–406 (2017).
Holler, M. et al. Three-dimensional imaging of integrated circuits with macro- to nanoscale zoom. Nat. Electron. 2, 464–470 (2019).
Aidukas, T. et al. High-performance 4-nm-resolution X-ray tomography using burst ptychography. Nature 632, 81–88 (2024). Innovative advancements in ptychographic X-ray tomography enabled the quantitative 3D imaging of a 7-nm commercial integrated circuit, paving the way for future resolution enhancements.
Horstmeyer, R., Ou, X., Zheng, G., Willems, P. & Yang, C. Digital pathology with Fourier ptychography. Comput. Med. Imaging Graph. 42, 38–43 (2015).
Shahmoradian, S. H. et al. Three-dimensional imaging of biological tissue by cryo X-ray ptychography. Sci Rep. 7, 6291 (2017).
Clark, J. N. et al. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science 341, 56–59 (2013).
Ihm, Y. et al. Direct observation of picosecond melting and disintegration of metallic nanoparticles. Nat. Commun. 10, 2411 (2019).
Williams, G. J. et al. Fresnel coherent diffractive imaging. Phys. Rev. Lett. 97, 025506 (2006).
Zhang, F. et al. Phase retrieval by coherent modulation imaging. Nat. Commun. 7, 13367 (2016).
Latychevskaia, T., Longchamp, J.-N. & Fink, H.-W. When holography meets coherent diffraction imaging. Opt. Express 20, 28871–28892 (2012).
Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7, 17141 (2018).
Miao, J. et al. High resolution 3D X-ray diffraction microscopy. Phys. Rev. Lett. 89, 088303 (2002).
Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).
Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 1179–1200 (2006).
Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2, 839–843 (2006). Single-shot coherent X-ray diffractive imaging was demonstrated by capturing an XFEL diffraction pattern before the sample was destroyed.
Sandberg, R. L. et al. Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett. 99, 098103 (2007).
Sandberg, R. L. et al. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution. Proc. Natl Acad. Sci. USA 105, 24–27 (2008).
Ravasio, A. et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source. Phys. Rev. Lett. 103, 028104 (2009).
Miao, J., Ohsuna, T., Terasaki, O., Hodgson, K. O. & O’Keefe, M. A. Atomic resolution three-dimensional electron diffraction microscopy. Phys. Rev. Lett. 89, 155502 (2002).
Zuo, J. M., Vartanyants, I., Gao, M., Zhang, R. & Nagahara, L. A. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300, 1419–1421 (2003).
Huang, W. J., Zuo, J. M., Jiang, B., Kwon, K. W. & Shim, M. Sub-ångström-resolution diffractive imaging of single nanocrystals. Nat. Phys. 5, 129–133 (2009).
De Caro, L., Carlino, E., Caputo, G., Cozzoli, P. D. & Giannini, C. Electron diffractive imaging of oxygen atoms in nanocrystals at sub-ångström resolution. Nat. Nanotechnol. 5, 360–365 (2010).
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).
Robinson, I. K., Vartanyants, I. A., Williams, G. J., Pfeifer, M. A. & Pitney, J. A. Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction. Phys. Rev. Lett. 87, 195505 (2001).
Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006). Bragg CDI was demonstrated for quantitative 3D imaging of lattice strain at the nanoscale.
Marathe, S. et al. Coherent diffraction surface imaging in reflection geometry. Opt. Express 18, 7253–7262 (2010).
Roy, S. et al. Lensless X-ray imaging in reflection geometry. Nat. Photon. 5, 243–245 (2011).
Sun, T., Jiang, Z., Strzalka, J., Ocola, L. & Wang, J. Three-dimensional coherent X-ray surface scattering imaging near total external reflection. Nat. Photon. 6, 586–590 (2012).
Yang, Y. & Sinha, S. K. Three-dimensional imaging using coherent x rays at grazing incidence geometry. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 40, 1500–1506 (2023).
Seaberg, M. D. et al. Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography. Optica 1, 39–44 (2014).
Zhang, B. et al. High contrast 3D imaging of surfaces near the wavelength limit using tabletop EUV ptychography. Ultramicroscopy 158, 98–104 (2015).
Tanksalvala, M. et al. Nondestructive, high-resolution, chemically specific 3D nanostructure characterization using phase-sensitive EUV imaging reflectometry. Sci. Adv. 7, eabd9667 (2021).
Abbey, B. et al. Keyhole coherent diffractive imaging. Nat. Phys. 4, 394–398 (2008).
Kfir, O. et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 3, eaao4641 (2017).
Broennimann, C. et al. The PILATUS 1M detector. J. Synchrotron Radiat. 13, 120–130 (2006).
Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).
Grimes, M. et al. Bragg coherent diffraction imaging with the CITIUS charge-integrating detector. J. Appl. Crystallogr. 56, 1032–1037 (2023).
Miao, J., Förster, F. & Levi, O. Equally sloped tomography with oversampling reconstruction. Phys. Rev. B 72, 052103 (2005).
Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012). The experimental demonstration of atomic electron tomography at 2.4 Å resolution was enabled by an advanced computational algorithm.
Miao, J., Ercius, P. & Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).
Pham, M., Yuan, Y., Rana, A., Osher, S. & Miao, J. Accurate real space iterative reconstruction (RESIRE) algorithm for tomography. Sci Rep. 13, 5624 (2023).
Yang, Y. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021). The 3D atomic structure of a metallic glass was determined by atomic electron tomography, revealing both short- and medium-range order in the atomic arrangement.
Yuan, Y. et al. Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nat. Mater. 21, 95–102 (2022).
Chang, D. J. et al. Ptychographic atomic electron tomography: towards three-dimensional imaging of individual light atoms in materials. Phys. Rev. B 102, 174101 (2020).
Pelz, P. M. et al. Solving complex nanostructures with ptychographic atomic electron tomography. Nat. Commun. 14, 7906 (2023).
Hoppe, W. Diffraction in inhomogeneous primary wave fields: 1. Principle of phase determination from electron diffraction interference [in German]. Acta Crystallogr. A 25, 495–501 (1969).
Hoppe, W. Diffraction in inhomogeneous primary wave fields: 3. Amplitude and phase determination for nonperiodic objects [in German]. Acta Crystallogr. A 25, 508–515 (1969).
Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos. Trans. A Math. Phys. Eng. Sci. 339, 521–553 (1992).
Nellist, P. D., McCallum, B. C. & Rodenburg, J. M. Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1995).
Chapman, H. N. Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution. Ultramicroscopy 66, 153–172 (1996).
Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007). Modern ptychography was demonstrated by scanning an X-ray probe across an extended sample and using an iterative phase-retrieval algorithm to reconstruct its complex transmission function.
Faulkner, H. M. L. & Rodenburg, J. M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903 (2004).
Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008). This is the experimental demonstration of reconstructing the complex-valued probe and sample functions using iterative phase retrieval in modern ptychography.
Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).
Guizar-Sicairos, M. & Fienup, J. R. Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Opt. Express 16, 7264–7278 (2008).
Maiden, A. M., Humphry, M. J., Sarahan, M. C., Kraus, B. & Rodenburg, J. M. An annealing algorithm to correct positioning errors in ptychography. Ultramicroscopy 120, 64–72 (2012).
Raines, K. S. et al. Three-dimensional structure determination from a single view. Nature 463, 214–217 (2010).
Wei, H. Fundamental limits of ‘ankylography’ due to dimensional deficiency. Nature 480, E1 (2011).
Wang, G., Yu, H., Cong, W. & Katsevich, A. Non-uniqueness and instability of ‘ankylography’. Nature 480, E2–E3 (2011).
Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 29, 1606–1614 (2012).
Suzuki, A. et al. High-resolution multislice X-ray ptychography of extended thick objects. Phys. Rev. Lett. 112, 053903 (2014).
O’Leary, C. M. et al. Three-dimensional structure of buried heterointerfaces revealed by multislice ptychography. Phys. Rev. Appl. 22, 014016 (2024).
Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).
Lozano, J. G., Martinez, G. T., Jin, L., Nellist, P. D. & Bruce, P. G. Low-dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography. Nano Lett. 18, 6850–6855 (2018).
Song, J. et al. Atomic resolution defocused electron ptychography at low dose with a fast, direct electron detector. Sci Rep. 9, 3919 (2019).
O’Leary, C. M. et al. Phase reconstruction using fast binary 4D STEM data. Appl. Phys. Lett. 116, 124101 (2020).
Chen, Z. et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nat. Commun. 11, 2994 (2020).
Peng, X. et al. Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nat. Commun. 13, 5197 (2022).
Sha, H. et al. Ptychographic measurements of varying size and shape along zeolite channels. Sci. Adv. 9, eadf1151 (2023).
Zhang, H. et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 380, 633–638 (2023).
Kirkland, A. I., Saxton, W. O., Chau, K.-L., Tsuno, K. & Kawasaki, M. Super-resolution by aperture synthesis: tilt series reconstruction in CTEM. Ultramicroscopy 57, 355–374 (1995).
Haigh, S. J., Sawada, H. & Kirkland, A. I. Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys. Rev. Lett. 103, 126101 (2009).
Horstmeyer, R. & Yang, C. A phase space model of Fourier ptychographic microscopy. Opt. Express 22, 338–358 (2014).
Tian, L., Li, X., Ramchandran, K. & Waller, L. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomed. Opt. Express 5, 2376–2389 (2014).
Horstmeyer, R., Chung, J., Ou, X., Zheng, G. & Yang, C. Diffraction tomography with Fourier ptychography. Optica 3, 827–835 (2016).
Tian, L. & Waller, L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica 2, 104–111 (2015).
Chowdhury, S. et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica 6, 1211–1219 (2019).
Sha, H., Cui, J. & Yu, R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction. Sci. Adv. 8, eabn2275 (2022).
Moniri, S. et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 624, 564–569 (2023).
Yang, Y. et al. Atomic-scale identification of active sites of oxygen reduction nanocatalysts. Nat. Catal. 7, 796–806 (2024).
Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Yang, Y. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).
Rupp, D. et al. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source. Nat. Commun. 8, 493 (2017).
Langbehn, B. et al. Three-dimensional shapes of spinning helium nanodroplets. Phys. Rev. Lett. 121, 255301 (2018).
Feinberg, A. J. et al. X-ray diffractive imaging of highly ionized helium nanodroplets. Phys. Rev. Res. 4, L022063 (2022).
Johnson, A. S. et al. Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide. Sci. Adv. 7, eabf1386 (2021).
Shapiro, D. A. et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photon. 8, 765–769 (2014).
Kim, D. et al. Active site localization of methane oxidation on Pt nanocrystals. Nat. Commun. 9, 3422 (2018).
Yau, A., Cha, W., Kanan, M. W., Stephenson, G. B. & Ulvestad, A. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films. Science 356, 739–742 (2017).
Loh, N. D. et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 486, 513–517 (2012).
Barty, A. et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat. Photon. 2, 415–419 (2008).
Abbey, B. et al. Quantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nm. Appl. Phys. Lett. 93, 214101 (2008).
Nogales, E. & Mahamid, J. Bridging structural and cell biology with cryo-electron microscopy. Nature 628, 47–56 (2024).
Huang, X. et al. Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. Phys. Rev. Lett. 103, 198101 (2009).
Rodriguez, J. A. et al. Three-dimensional coherent X-ray diffractive imaging of whole, frozen-hydrated cells. IUCrJ. 2, 575–583 (2015).
Zhou, L. et al. Low-dose phase retrieval of biological specimens using cryo-electron ptychography. Nat. Commun. 11, 2773 (2020).
Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011). Serial femtosecond crystallography was demonstrated to determine protein nanocrystal structures by capturing snapshot diffraction patterns with XFEL pulses.
Barends, T. R. M., Stauch, B., Cherezov, V. & Schlichting, I. Serial femtosecond crystallography. Nat. Rev. Methods Primers 2, 59 (2022).
Rodriguez, J. A. et al. Structure of the toxic core of α-synuclein from invisible crystals. Nature 525, 486–490 (2015).
Kimura, T. et al. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat. Commun. 5, 3052 (2014).
van der Schot, G. et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun. 6, 5704 (2015).
Hantke, M. F. et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat. Photon. 8, 943–949 (2014).
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
Wakonig, K. et al. PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data. J. Appl. Crystallogr. 53, 574–586 (2020).
Savitzky, B. H. et al. py4DSTEM: a software package for four-dimensional scanning transmission electron microscopy data analysis. Microsc. Microanal. 27, 712–743 (2021).
Sinha, A., Lee, J., Li, S. & Barbastathis, G. Lensless computational imaging through deep learning. Optica 4, 1117–1125 (2017).
Kappeler, A., Ghosh, S., Holloway, J., Cossairt, O. & Katsaggelos, A. Ptychnet: CNN based fourier ptychography. In Proc. IEEE Int. Conf. Image Processing 1712–1716 (IEEE, 2017).
Wang, K. et al. On the use of deep learning for phase recovery. Light Sci. Appl. 13, 4 (2024).
Cherukara, M. J., Nashed, Y. S. G. & Harder, R. J. Real-time coherent diffraction inversion using deep generative networks. Sci Rep. 8, 16520 (2018).
Wu, L. et al. Three-dimensional coherent X-ray diffraction imaging via deep convolutional neural networks. NPJ Comput. Mater. 7, 175 (2021).
Chang, D. J. et al. Deep-learning electron diffractive imaging. Phys. Rev. Lett. 130, 016101 (2023).
Schloz, M. et al. Deep reinforcement learning for data-driven adaptive scanning in ptychography. Sci Rep. 13, 8732 (2023).
Babu, A. V. et al. Deep learning at the edge enables real-time streaming ptychographic imaging. Nat. Commun. 14, 7059 (2023).
Lee, J., Lee, M., Park, Y., Ophus, C. & Yang, Y. Multislice electron tomography using four-dimensional scanning transmission electron microscopy. Phys. Rev. Appl. 19, 054062 (2023).
Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).
Li, P. et al. 4th generation synchrotron source boosts crystalline imaging at the nanoscale. Light Sci. Appl. 11, 73 (2022).
Lo, Y. H. et al. In situ coherent diffractive imaging. Nat. Commun. 9, 1826 (2018).
Lu, X. et al. Computational microscopy beyond perfect lenses. Phys. Rev. E 110, 054407 (2024).
Young, L. et al. Roadmap of ultrafast x-ray atomic and molecular physics. J. Phys. B At. Mol. Opt. Phys. 51, 032003 (2018).
Wakonig, K. et al. X-ray Fourier ptychography. Sci. Adv. 5, eaav0282 (2019).
Cao, R., Shen, C. & Yang, C. High-resolution, large field-of-view label-free imaging via aberration-corrected, closed-form complex field reconstruction. Nat. Commun. 15, 4713 (2024).
Schnars, U., Falldorf, C., Watson, J. & Jüptner, W. in Digital Holography and Wavefront Sensing: Principles, Techniques and Applications 2nd edn (eds Schnars, U. et al.) 39–68 (Springer, 2015).
Taylor, G. The phase problem. Acta Crystallogr. D Biol. Crystallogr. 59, 1881–1890 (2003).
Sayre, D. Some implications of a theorem due to Shannon. Acta Crystallogr. 5, 843 (1952).
Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978).
Bruck, Y. M. & Sodin, L. G. On the ambiguity of the image reconstruction problem. Opt. Commun. 30, 304–308 (1979).
Hayes, M. H. The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 30, 140–154 (1982).
Candès, E. J., Li, X. & Soltanolkotabi, M. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61, 1985–2007 (2015).
Grohs, P., Koppensteiner, S. & Rathmair, M. Phase retrieval: uniqueness and stability. SIAM Rev. 62, 301–350 (2020).
Elser, V. Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20, 40–55 (2003).
Luke, D. R. Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 21, 37–50 (2005).
Rodriguez, J. A., Xu, R., Chen, C.-C., Zou, Y. & Miao, J. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J. Appl. Cryst. 46, 312–318 (2013).
Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009). The extended ptychographic iterative engine was developed to simultaneously reconstruct the complex-valued probe and sample functions.
Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 14, 063004 (2012).
Odstrčil, M., Menzel, A. & Guizar-Sicairos, M. Iterative least-squares solver for generalized maximum-likelihood ptychography. Opt. Express 26, 3108–3123 (2018).
Szameit, A. et al. Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater. 11, 455–459 (2012).
Candès, E. J., Strohmer, T. & Voroninski, V. PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013). Phase retrieval was formulated as a convex optimization problem, known as PhaseLift, sparking intense research into numerical algorithms in applied mathematics.
Waldspurger, I., d’Aspremont, A. & Mallat, S. Phase recovery, MaxCut and complex semidefinite programming. Math. Program. 149, 47–81 (2015).