Friday, January 10, 2025
No menu items!
HomeNatureHow frictional ruptures and earthquakes nucleate and evolve

How frictional ruptures and earthquakes nucleate and evolve

  • Rubinstein, S. M., Cohen, G. & Fineberg, J. Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xia, K., Rosakis, A. J. & Kanamori, H. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Passelègue, F. X. et al. Initial effective stress controls the nature of earthquakes. Nat. Commun. 11, 5132 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schubnel, A., Nielsen, S., Taddeucci, J., Vinciguerra, S. & Rao, S. Photo-acoustic study of subshear and supershear ruptures in the laboratory. Earth Planet. Sci. Lett. 308, 424–432 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Svetlizky, I. & Fineberg, J. Classical shear cracks drive the onset of dry frictional motion. Nature 509, 205–208 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wu, B. S. & McLaskey, G. C. Contained laboratory earthquakes ranging from slow to fast. J. Geophys. Res. Solid Earth 124, 10270–10291 (2019).

    Article 

    Google Scholar
     

  • Xu, S., Fukuyama, E. & Yamashita, F. Robust estimation of rupture properties at propagating front of laboratory earthquakes. J. Geophys. Res. Solid Earth 124, 766–787 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Byerlee, J. D. & Brace, W. F. Stick slip, stable sliding, and earthquakes-effect of rock type, pressure, strain rate, and stiffness. J. Geophys. Res. 73, 6031–6037 (1968).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Scholz, C. H. The Mechanics of Earthquakes and Faulting 3rd edn (Cambridge Univ. Press, 2019).

  • Ohnaka, M. & Shen, L.-F. Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. J. Geophys. Res. Solid Earth 104, 817–844 (1999).

    Article 
    MATH 

    Google Scholar
     

  • Latour, S., Schubnel, A., Nielsen, S., Madariaga, R. & Vinciguerra, S. Characterization of nucleation during laboratory earthquakes. Geophys. Res. Lett. 40, 5064–5069 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dresen, G., Kwiatek, G., Goebel, T. & Ben-Zion, Y. Seismic and aseismic preparatory processes before large stick-slip failure. Pure Appl. Geophys. 177, 5741–5760 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Popov, V. L., Grzemba, B., Starcevic, J. & Fabry, C. Accelerated creep as a precursor of friction instability and earthquake prediction. Phys. Mesomech. 13, 283–291 (2010).

    Article 

    Google Scholar
     

  • Lapusta, N. & Rice, J. R. Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys. Res. Solid Earth 108, 2205 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Uenishi, K. & Rice, J. R. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. J. Geophys. Res. Solid Earth 108, 2042 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hulbert, C. et al. Similarity of fast and slow earthquakes illuminated by machine learning. Nat. Geosci. 12, 69–74 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Leeman, J. R., Marone, C. & Saffer, D. M. Frictional mechanics of slow earthquakes. J. Geophys. Res. Solid Earth 123, 7931–7949 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Gvirtzman, S. & Fineberg, J. Nucleation fronts ignite the interface rupture that initiates frictional motion. Nat. Phys. 17, 1037–1042 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Gvirtzman, S. & Fineberg, J. The initiation of frictional motion–the nucleation dynamics of frictional ruptures. J. Geophys. Res. Solid Earth 128, e2022JB025483 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Weng, H. & Ampuero, J.-P. The dynamics of elongated earthquake ruptures. J. Geophys. Res. Solid Earth 124, 8584–8610 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Weng, H. & Ampuero, J.-P. Integrated rupture mechanics for slow slip events and earthquakes. Nat. Commun. 13, 7327 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1998).

  • Broberg, K. B. Cracks and Fracture (Academic Press, 1999).

  • Palmer, A. C. & Rice, J. R. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. A 332, 527–548 (1973).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Barras, F. et al. Emergence of cracklike behavior of frictional rupture: The origin of stress drops. Phys. Rev. X 9, 041043 (2019).

    CAS 
    MATH 

    Google Scholar
     

  • Barras, F. et al. The emergence of crack-like behavior of frictional rupture: Edge singularity and energy balance. Earth Planet. Sci. Lett. 531, 115978 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kostrov, B. Selfsimilar problems of propagation of shear cracks. J. Appl. Math Mech. 28, 1077–1087 (1964).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Kanamori, H. & Brodsky, E. E. The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1498 (2004).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Viesca, R. C. & Garagash, D. I. Ubiquitous weakening of faults due to thermal pressurization. Nat. Geosci. 8, 875–879 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Mello, M., Bhat, H. S. & Rosakis, A. J. Spatiotemporal properties of Sub-Rayleigh and supershear rupture velocity fields: Theory and experiments. J. Mech. Phys. Solids 93, 153–181 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Svetlizky, I., Kammer, D. S., Bayart, E., Cohen, G. & Fineberg, J. Brittle fracture theory predicts the equation of motion of frictional rupture fronts. Phys. Rev. Lett. 118, 125501 (2017).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kammer, D. S., Svetlizky, I., Cohen, G. & Fineberg, J. The equation of motion for supershear frictional rupture fronts. Sci. Adv. 4, eaat5622 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bayart, E., Svetlizky, I. & Fineberg, J. Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nat. Phys. 12, 166–170 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bayart, E., Svetlizky, I. & Fineberg, J. Rupture dynamics of heterogeneous frictional interfaces. J. Geophys. Res. Solid Earth 123, 3828–3848 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Paglialunga, F., Passelègue, F., Lebihain, M. & Violay, M. Frictional weakening leads to unconventional singularities during dynamic rupture propagation. Earth Planet. Sci. Lett. 626, 118550 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Brener, E. A. & Bouchbinder, E. Unconventional singularities and energy balance in frictional rupture. Nat. Commun. 12, 2585 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ben-David, O., Cohen, G. & Fineberg, J. The dynamics of the onset of frictional slip. Science 330, 211–214 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gori, M., Rubino, V., Rosakis, A. J. & Lapusta, N. Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics across multiple temporal scales. Proc. Natl Acad. Sci. USA 118, e2023433118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Marone, C. in The Spectrum of Fault Slip Modes from Elastodynamic Rupture to Slow Earthquakes (eds Bizzarri, A. et al.) Mechanics of Earthquake Faulting, Vol. 202, 81–94 (IOS Press, 2019).

  • Guérin-Marthe, S., Nielsen, S., Bird, R., Giani, S. & Di Toro, G. Earthquake nucleation size: evidence of loading rate dependence in laboratory faults. J. Geophys. Res. Solid Earth 124, 689–708 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fukuyama, E. et al. Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments. Tectonophysics 733, 182–192 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • McLaskey, G. C. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res. Solid Earth 124, 12882–12904 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Cebry, S. B. L. & McLaskey, G. C. Seismic swarms produced by rapid fluid injection into a low permeability laboratory fault. Earth Planet. Sci. Lett. 557, 116726 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Dieterich, J. H. Earthquake Nucleation on Faults with Rate-Dependent and State-Dependent Strength. Tectonophysics 211, 115–134 (1992).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Ray, S. & Viesca, R. C. Earthquake nucleation on faults with heterogeneous frictional properties, normal stress. J. Geophys. Res. Solid Earth 122, 8214–8240 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Rubin, A. M. & Ampuero, J.-P. Earthquake nucleation on (aging) rate and state faults. J. Geophys. Res. Solid Earth 110, B11312 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Castellano, M., Lorez, F. & Kammer, D. S. Nucleation of frictional slip: a yielding or a fracture process? J. Mech. Phys. Solids 173, 105193 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Chen, T. & Lapusta, N. On behaviour and scaling of small repeating earthquakes in rate and state fault models. Geophys. J. Int. 218, 2001–2018 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dal Zilio, L., Lapusta, N. & Avouac, J.-P. Unraveling scaling properties of slow-slip events. Geophys. Res. Lett. 47, e2020GL087477 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Goldman, T., Livne, A. & Fineberg, J. Acquisition of inertia by a moving crack. Phys. Rev. Lett. 104, 114301 (2010).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, M., Adda-Bedia, M., Kolinski, J. M. & Fineberg, J. How hidden 3d structure within crack fronts reveals energy balance. J. Mech. Phys. Solids 161, 104795 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Vasudevan, A. et al. Adaptation of the tapered double cantilever beam test for the measurement of fracture energy and its variations with crack speed. Preprint at https://doi.org/10.48550/arXiv.2101.04380 (2021).

  • Scheibert, J., Guerra, C., Célarié, F., Dalmas, D. & Bonamy, D. Brittle-quasibrittle transition in dynamic fracture: an energetic signature. Phys. Rev. Lett. 104, 045501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. Solid Earth 112, B09404 (2007).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Galis, M. et al. On the initiation of sustained slip-weakening ruptures by localized stresses. Geophys. J. Int. 200, 890–909 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Liu, C. et al. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye. Nat. Commun. 14, 5564 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, K. et al. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California shear zone. Nat. Commun. 11, 22 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments