Friday, January 10, 2025
No menu items!
HomeNatureReinventing type 2 immunity in cancer

Reinventing type 2 immunity in cancer

  • Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, Y., Orellana, M. A., Schreiber, R. D. & Remington, J. S. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 240, 516–518 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Harris, N. L. & Loke, P. Recent advances in type-2-cell-mediated immunity: insights from helminth infection. Immunity 47, 1024–1036 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Allen, J. E. IL-4 and IL-13: regulators and effectors of wound repair. Annu. Rev. Immunol. 41, 229–254 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • LaMarche, N. M. et al. An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis. Nature 625, 166–174 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gieseck, R. L. 3rd, Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zaiss, D. M. W., Pearce, E. J., Artis, D., McKenzie, A. N. J. & Klose, C. S. N. Cooperation of ILC2s and TH2 cells in the expulsion of intestinal helminth parasites. Nat. Rev. Immunol. 24, 294–302 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katona, I. M., Urban, J. F. Jr & Finkelman, F. D. The role of L3T4+ and Lyt-2+ T cells in the IgE response and immunity to Nippostrongylus brasiliensis. J. Immunol. 140, 3206–3211 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urban, J. F. Jr, Katona, I. M., Paul, W. E. & Finkelman, F. D. Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc. Natl Acad. Sci. USA 88, 5513–5517 (1991).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Else, K. J. & Grencis, R. K. Antibody-independent effector mechanisms in resistance to the intestinal nematode parasite Trichuris muris. Infect. Immun. 64, 2950–2954 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010). References 14–16 identified ILC2s as natural helper cells, nuocytes and innate helper type 2 cells, respectively.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koyasu, S., Moro, K., Tanabe, M. & Takeuchi, T. Natural helper cells: a new player in the innate immune response against helminth infection. Adv. Immunol. 108, 21–44 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molofsky, A. B. & Locksley, R. M. The ins and outs of innate and adaptive type 2 immunity. Immunity 56, 704–722 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rak, G. D. et al. IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J. Invest. Dermatol. 136, 487–496 (2016). This study highlights the involevemnt of ILC2s in cutaneous wound healing.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shimokawa, C. et al. Mast cells are crucial for induction of group 2 innate lymphoid cells and clearance of helminth infections. Immunity 46, 863–874.e864 (2017). This study identified the role of mast cells in the clearance of helminths.

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chang, C. Y. et al. Tumor suppressor p53 regulates intestinal type 2 immunity. Nat. Commun. 12, 3371 (2021). This study uncovered the role of the tumour supressor p53 in regulating intestinal type 2 immunity against parasitic infections.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nausch, N. et al. Group 2 innate lymphoid cell proportions are diminished in young helminth infected children and restored by curative anti-helminthic treatment. PLoS Negl. Trop. Dis. 9, e0003627 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brindley, P. J., da Costa, J. M. C. & Sripa, B. Why does infection with some helminths cause cancer? Trends Cancer 1, 174–182 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brindley, P. J. & Loukas, A. Helminth infection-induced malignancy. PLoS Pathog. 13, e1006393 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haswell-Elkins, M. R. et al. Liver fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosation in human carcinogenesis. Mutat. Res. 305, 241–252 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijg, J. & Dong, X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell 182, 12–23 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimura, T. et al. Evolutionary histories of breast cancer and related clones. Nature 620, 607–614 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chan-On, W. et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat. Genet. 45, 1474–1478 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jusakul, A., Kongpetch, S. & Teh, B. T. Genetics of Opisthorchis viverrini-related cholangiocarcinoma. Curr. Opin. Gastroenterol. 31, 258–263 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gouveia, M. J. et al. Estrogen-like metabolites and DNA-adducts in urogenital schistosomiasis-associated bladder cancer. Cancer Lett. 359, 226–232 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chala, B. et al. Development of urinary bladder pre-neoplasia by Schistosoma haematobium eggs and chemical carcinogen in mice. Korean J. Parasitol. 55, 21–29 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Palfree, R. G., Bennett, H. P. & Bateman, A. The evolution of the secreted regulatory protein progranulin. PLoS ONE 10, e0133749 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smout, M. J. et al. A granulin-like growth factor secreted by the carcinogenic liver fluke, Opisthorchis viverrini, promotes proliferation of host cells. PLoS Pathog. 5, e1000611 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaiyadet, S. et al. Knockout of liver fluke granulin, Ov-grn-1, impedes malignant transformation during chronic infection with Opisthorchis viverrini. PLoS Pathog. 18, e1010839 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haugen, B. et al. Granulin secreted by the food-borne liver fluke Opisthorchis viverrini promotes angiogenesis in human endothelial cells. Front. Med. 5, 30 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Otaki, N. et al. Activation of ILC2s through constitutive IFNγ signaling reduction leads to spontaneous pulmonary fibrosis. Nat. Commun. 14, 8120 (2023). This study established a novel mouse model for pulmonary fibrosis and uncovered the role of ILC2s in the disease onset.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gieseck, R. L. 3rd et al. Interleukin-13 activates distinct cellular pathways leading to ductular reaction, steatosis, and fibrosis. Immunity 45, 145–158 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Reilly, S., Ciechomska, M., Fullard, N., Przyborski, S. & van Laar, J. M. IL-13 mediates collagen deposition via STAT6 and microRNA-135b: a role for epigenetics. Sci. Rep. 6, 25066 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simoes, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 11, 600 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C. G. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J. Exp. Med. 194, 809–821 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Theocharidis, G. et al. Type VI collagen regulates dermal matrix assembly and fibroblast motility. J. Invest. Dermatol. 136, 74–83 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costain, A. H., MacDonald, A. S. & Smits, H. H. Schistosome egg migration: mechanisms, pathogenesis and host immune responses. Front. Immunol. 9, 3042 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, J. et al. Fibroblast-specific protein 1/S100A4-positive cells prevent carcinoma through collagen production and encapsulation of carcinogens. Cancer Res. 73, 2770–2781 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yang, D., Liu, J., Qian, H. & Zhuang, Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp. Mol. Med. 55, 1322–1332 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mizutani, Y. et al. Meflin-positive cancer-associated fibroblasts inhibit pancreatic carcinogenesis. Cancer Res. 79, 5367–5381 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, A. K. et al. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis 7, 78 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pallangyo, C. K., Ziegler, P. K. & Greten, F. R. IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J. Exp. Med. 212, 2253–2266 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Cancer-associated fibroblasts suppress cancer development: the other side of the coin. Front. Cell Dev. Biol. 9, 613534 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeoh, W. J., Vu, V. P. & Krebs, P. IL-33 biology in cancer: an update and future perspectives. Cytokine 157, 155961 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ma, Y., Hwang, R. F., Logsdon, C. D. & Ullrich, S. E. Dynamic mast cell–stromal cell interactions promote growth of pancreatic cancer. Cancer Res. 73, 3927–3937 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuler, T., Kornig, S. & Blankenstein, T. Tumor rejection by modulation of tumor stromal fibroblasts. J. Exp. Med. 198, 1487–1493 (2003).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Demehri, S. et al. Elevated epidermal thymic stromal lymphopoietin levels establish an antitumor environment in the skin. Cancer Cell 22, 494–505 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Piazza, M., Nowell, C. S., Koch, U., Durham, A. D. & Radtke, F. Loss of cutaneous TSLP-dependent immune responses skews the balance of inflammation from tumor protective to tumor promoting. Cancer Cell 22, 479–493 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Demehri, S. et al. Thymic stromal lymphopoietin blocks early stages of breast carcinogenesis. J. Clin. Invest. 126, 1458–1470 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Furuta, S. et al. IL-25 causes apoptosis of IL-25R-expressing breast cancer cells without toxicity to nonmalignant cells. Sci. Transl. Med. 3, 78ra31 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Intratumorally establishing type 2 innate lymphoid cells blocks tumor growth. J. Immunol. 196, 2410–2423 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bosco, M. et al. Low doses of IL-4 injected perilymphatically in tumor-bearing mice inhibit the growth of poorly and apparently nonimmunogenic tumors and induce a tumor-specific immune memory. J. Immunol. 145, 3136–3143 (1990).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Modesti, A. et al. Ultrastructural evidence of the mechanisms responsible for interleukin-4-activated rejection of a spontaneous murine adenocarcinoma. Int. J. Cancer 53, 988–993 (1993). References 59 and 60 revealed that IL-4 has a role in tumour rejection in mouse models.

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pericle, F. et al. An efficient Th2-type memory follows CD8+ lymphocyte-driven and eosinophil-mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. J. Immunol. 153, 5659–5673 (1994).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wolf, M. T. et al. A biologic scaffold-associated type 2 immune microenvironment inhibits tumor formation and synergizes with checkpoint immunotherapy. Sci. Transl. Med. 11, eaat7973 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simson, L. et al. Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J. Immunol. 178, 4222–4229 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ikutani, M. et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703–713 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalessandri, T., Crawford, G., Hayes, M., Castro Seoane, R. & Strid, J. IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat. Commun. 7, 12080 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volpert, O. V. et al. Inhibition of angiogenesis by interleukin 4. J. Exp. Med. 188, 1039–1046 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Haas, C. S. et al. Inhibition of angiogenesis by interleukin-4 gene therapy in rat adjuvant-induced arthritis. Arthritis Rheum. 54, 2402–2414 (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Haas, C. S. et al. In vivo inhibition of angiogenesis by interleukin-13 gene therapy in a rat model of rheumatoid arthritis. Arthritis Rheum. 56, 2535–2548 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nishimura, T. et al. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J. Exp. Med. 190, 617–627 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jacenik, D., Karagiannidis, I. & Beswick, E. J. Th2 cells inhibit growth of colon and pancreas cancers by promoting anti-tumorigenic responses from macrophages and eosinophils. Br. J. Cancer 128, 387–397 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattes, J. et al. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J. Exp. Med. 197, 387–393 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lorvik, K. B. et al. Adoptive transfer of tumor-specific Th2 cells eradicates tumors by triggering an in situ inflammatory immune response. Cancer Res. 76, 6864–6876 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cassetta, L. & Pollard, J. W. A timeline of tumour-associated macrophage biology. Nat. Rev. Cancer 23, 238–257 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, M. et al. TGFβ suppresses type 2 immunity to cancer. Nature 587, 115–120 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018). This review addresses the field of innate lymphoid cells.

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wagner, M., Moro, K. & Koyasu, S. Plastic heterogeneity of innate lymphoid cells in cancer. Trends Cancer 3, 326–335 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xu, X. Y. et al. Group-2 innate lymphoid cells promote HCC progression through CXCL2–neutrophil-induced immunosuppression. Hepatology 74, 2526–2543 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinrich, B. et al. The tumour microenvironment shapes innate lymphoid cells in patients with hepatocellular carcinoma. Gut 71, 1161–1175 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wagner, M. & Koyasu, S. Cancer immunoediting by innate lymphoid cells. Trends Immunol. 40, 415–430 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Transdifferentiation of tumor infiltrating innate lymphoid cells during progression of colorectal cancer. Cell Res. 30, 610–622 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Huang, Q. et al. Type 2 innate lymphoid cells protect against colorectal cancer progression and predict improved patient survival. Cancers 13, 559 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Moral, J. A. et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130–135 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Therapeutic application of human type 2 innate lymphoid cells via induction of granzyme B-mediated tumor cell death. Cell 187, 624–641.e623 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wagner, M. & Koyasu, S. Innate lymphoid cells in skin homeostasis and malignancy. Front. Immunol. 12, 758522 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, M. & Koyasu, S. Cancer immunosurveillance by ILC2s. Trends Cancer 8, 792–794 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jang, Y. et al. UVB induces HIF-1α-dependent TSLP expression via the JNK and ERK pathways. J. Invest. Dermatol. 133, 2601–2608 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Meephansan, J., Komine, M., Tsuda, H., Tominaga, S. & Ohtsuki, M. Ultraviolet B irradiation induces the expression of IL-33 mRNA and protein in normal human epidermal keratinocytes. J. Dermatol. Sci. 65, 72–74 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopp, E. B., Agaronyan, K., Licona-Limon, I., Nish, S. A. & Medzhitov, R. Modes of type 2 immune response initiation. Immunity 56, 687–694 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, M. et al. Tumor-derived lactic acid contributes to the paucity of intratumoral ILC2s. Cell Rep. 30, 2743–2757.e2745 (2020). This study highlights the tumoricidal potential of ILC2s and the mechanism of tumour evasion in primary melanoma.

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Howard, E. et al. PD-1 blockade on tumor microenvironment-resident ILC2s promotes TNF-α production and restricts progression of metastatic melanoma. Front. Immunol. 12, 733136 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, H. et al. LKB1 prevents ILC2 exhaustion to enhance antitumor immunity. Cell Rep. 43, 113579 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Dopamine receptor 1 impedes ILC2-mediated antitumor immunity. J. Immunol. 211, 1418–1425 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacquelot, N. et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol. 22, 851–864 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grisaru-Tal, S., Rothenberg, M. E. & Munitz, A. Eosinophil–lymphocyte interactions in the tumor microenvironment and cancer immunotherapy. Nat. Immunol. 23, 1309–1316 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Overmeire, E. et al. M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer Res. 76, 35–42 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Spits, H. & Mjosberg, J. Heterogeneity of type 2 innate lymphoid cells. Nat. Rev. Immunol. 22, 701–712 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bald, T., Wagner, M., Gao, Y., Koyasu, S. & Smyth, M. J. Hide and seek: plasticity of innate lymphoid cells in cancer. Semin. Immunol. 41, 101273 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bal, S. M., Golebski, K. & Spits, H. Plasticity of innate lymphoid cell subsets. Nat. Rev. Immunol. 20, 552–565 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ricardo-Gonzalez, R. R. et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19, 1093–1099 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lucarini, V. et al. IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncoimmunology 6, e1317420 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rosenberg, H. F., Dyer, K. D. & Foster, P. S. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13, 9–22 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Grisaru-Tal, S., Itan, M., Klion, A. D. & Munitz, A. A new dawn for eosinophils in the tumour microenvironment. Nat. Rev. Cancer 20, 594–607 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Legrand, F. et al. Human eosinophils exert TNF-α and granzyme A-mediated tumoricidal activity toward colon carcinoma cells. J. Immunol. 185, 7443–7451 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carretero, R. et al. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat. Immunol. 16, 609–617 (2015). This study highlights the tumoricidal potential of eosinophils through the normalization of blood vessels.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorta, R. G. et al. Tumour-associated tissue eosinophilia as a prognostic factor in oral squamous cell carcinomas. Histopathology 41, 152–157 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fernandez-Acenero, M. J., Galindo-Gallego, M., Sanz, J. & Aljama, A. Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer 88, 1544–1548 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sosman, J. A. et al. Evidence for eosinophil activation in cancer patients receiving recombinant interleukin-4: effects of interleukin-4 alone and following interleukin-2 administration. Clin. Cancer Res. 1, 805–812 (1995).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Moreira, A., Leisgang, W., Schuler, G. & Heinzerling, L. Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy 9, 115–121 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Blomberg, O. S. et al. IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer. Cancer Cell 41, 106–123.e110 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hollande, C. et al. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated contαol of tumor growth. Nat. Immunol. 20, 257–264 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laumont, C. M., Banville, A. C., Gilardi, M., Hollern, D. P. & Nelson, B. H. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat. Rev. Cancer 22, 414–430 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasikova, L. et al. Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer. Nat. Commun. 15, 2528 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mukai, K., Tsai, M., Starkl, P., Marichal, T. & Galli, S. J. IgE and mast cells in host defense against parasites and venoms. Semin. Immunopathol. 38, 581–603 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen-Jarolim, E. et al. AllergoOncology—the impact of allergy in oncology: EAACI position paper. Allergy 72, 866–887 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ly, D., Zhu, C. Q., Cabanero, M., Tsao, M. S. & Zhang, L. Role for high-affinity IgE receptor in prognosis of lung adenocarcinoma patients. Cancer Immunol. Res. 5, 821–829 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siiskonen, H. et al. Low numbers of tryptase+ and chymase+ mast cells associated with reduced survival and advanced tumor stage in melanoma. Melanoma Res. 25, 479–485 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferastraoaru, D. et al. AllergoOncology: ultra-low IgE, a potential novel biomarker in cancer–a position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Clin. Transl. Allergy 10, 32 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spranger, S. & Gajewski, T. Rational combinations of immunotherapeutics that target discrete pathways. J. Immunother. Cancer 1, 16 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kumagai, S., Itahashi, K. & Nishikawa, H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat. Rev. Clin. Oncol. 21, 337–353 (2024). This study provides a new concept of carcinogenesis called ‘immuno-genomic cancer evolution’.

    Article 
    PubMed 

    Google Scholar
     

  • Bai, Z. et al. Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission. Nature 634, 702–711 (2024).

  • Feng, B. et al. The type 2 cytokine Fc–IL-4 revitalizes exhausted CD8+T cells against cancer. Nature 634, 712–720 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments