Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process Res. Dev. 23, 1213–1242 (2019).
Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).
Wills, A. G. et al. High-throughput electrochemistry: state of the art, challenges, and perspective. Org. Process Res. Dev. 25, 2587–2600 (2021).
Gütz, C., Klöckner, B. & Waldvogel, S. R. Electrochemical screening for electroorganic synthesis. Org. Process Res. Dev. 20, 26–32 (2016).
Rein, J., Lin, S., Kalyani, D. & Lehnherr, D. in The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) Vol. 1419 (eds Emmert, M. H., Jouffroy, M. & Leitch, D. C.) 167–187 (American Chemical Society, 2022).
Chen, H. & Mo, Y. Accelerated electrosynthesis development enabled by high-throughput experimentation. Synthesis 55, 2817–2832 (2023).
Graaf, M. D. & Moeller, K. D. Introduction to microelectrode arrays, the site-selective functionalization of electrode surfaces, and the real-time detection of binding events. Langmuir 31, 7697–7706 (2015).
Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).
Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).
Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Cent. Sci. 7, 415–431 (2021).
Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).
Little, R. D. & Moeller, K. D. Introduction: electrochemistry: technology, synthesis, energy, and materials. Chem. Rev. 118, 4483–4484 (2018).
Kolbe, H. Zersetzung der Valeriansäure durch den elektrischen Strom. Ann. Chem. Pharm. 64, 339–341 (1848).
Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemistry: calling all engineers. Angew. Chem. Int. Ed. 57, 4149–4155 (2018).
Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018).
Hendrick, C. E. et al. Direct-to-biology accelerates PROTAC synthesis and the evaluation of linker effects on permeability and degradation. ACS Med. Chem. Lett. 13, 1182–1190 (2022).
Stevens, R. et al. Integrated direct-to-biology platform for the nanoscale synthesis and biological evaluation of PROTACs. J. Med. Chem. 66, 15437–15452 (2023).
Siu, T., Li, W. & Yudin, A. K. Parallel electrosynthesis of α-alkoxycarbamates, α-alkoxyamides, and α-alkoxysulfonamides using the spatially addressable electrolysis platform (SAEP). J. Comb. Chem. 2, 545–549 (2000).
Palkowitz, M. D. et al. Overcoming limitations in decarboxylative arylation via Ag–Ni electrocatalysis. J. Am. Chem. Soc. 144, 17709–17720 (2022).
Rein, J. et al. Unlocking the potential of high-throughput experimentation for electrochemistry with a standardized microscale reactor. ACS Cent. Sci. 7, 1347–1355 (2021).
Gerroll, B. H. R., Kulesa, K. M., Ault, C. A. & Baker, L. A. Legion: an instrument for high-throughput electrochemistry. ACS Meas. Sci. Au 3, 371–379 (2023).
Miskin, M. Z. et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 584, 557–561 (2020).
Chen, J. & Mo, Y. Wireless electrochemical reactor for accelerated exploratory study of electroorganic synthesis. ACS Cent. Sci. 9, 1820–1826 (2023).
Molnar, A. C. et al. in Proc. 2021 IEEE Custom Integrated Circuits Conference (CICC) 1–6 (IEEE, 2021).
Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020).
Pijper, B. et al. Addressing reproducibility challenges in high-throughput photochemistry. JACS A 4, 2585–2595 (2024).
Qi, N. et al. Development of a high intensity parallel photoreactor for high throughput screening. React. Chem. Eng. 7, 354–360 (2022).
Flamm, K. Measuring Moore’s Law: evidence from price, cost, and quality indexes. National Bureau of Economic Research Working Paper Series No. 24553. https://www.nber.org/papers/w24553 (2018).
Kirste, A., Elsler, B., Schnakenburg, G. & Waldvogel, S. R. Efficient anodic and direct phenol-arene C,C cross-coupling: the benign role of water or methanol. J. Am. Chem. Soc. 134, 3571–3576 (2012).
Hoque, M. A. et al. Electrochemical PINOylation of methylarenes: improving the scope and utility of benzylic oxidation through mediated electrolysis. J. Am. Chem. Soc. 144, 15295–15302 (2022).
Siu, J. C., Parry, J. B. & Lin, S. Aminoxyl-catalyzed electrochemical diazidation of alkenes mediated by a metastable charge-transfer complex. J. Am. Chem. Soc. 141, 2825–2831 (2019).
Lehnherr, D. et al. Electrochemical synthesis of hindered primary and secondary amines via proton-coupled electron transfer. J. Am. Chem. Soc. 142, 468–478 (2020).
Zhang, B. et al. Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022).
Costa e Silva, R. et al. Electrosynthesis of aryliminophosphoranes in continuous flow. Adv. Synth. Catal. 366, 955–960 (2024).
Imada, Y. et al. Metal- and reagent-free dehydrogenative formal benzyl–aryl cross-coupling by anodic activation in 1,1,1,3,3,3-hexafluoropropan-2-ol. Angew. Chem. Int. Ed. 57, 12136–12140 (2018).
Huang, H. et al. Electrophotocatalysis with a trisaminocyclopropenium radical dication. Angew. Chem. Int. Ed. 58, 13318–13322 (2019).
Qiu, Y., Struwe, J., Meyer, T. H., Oliveira, J. C. A. & Ackermann, L. Catalyst- and reagent-free electrochemical azole C–H amination. Chem. Eur. J. 24, 12784–12789 (2018).
Anthony Romero, F. et al. The discovery of potent antagonists of NPBWR1 (GPR7). Bioorg. Med. Chem. Lett. 22, 1014–1018 (2012).
Thomas, R. P. et al. A direct-to-biology high-throughput chemistry approach to reactive fragment screening. Chem. Sci. 12, 12098–12106 (2021).
Wan, Z. et al. Electrochemical oxidative C(sp3)–H azolation of lactams under mild conditions. Green Chem. 22, 3742–3747 (2020).
Libendi, S. S., Demizu, Y. & Onomura, O. Direct electrochemical α-cyanation of N-protected cyclic amines. Org. Biomol. Chem. 7, 351–356 (2009).
Tajima, T. & Nakajima, A. Direct oxidative cyanation based on the concept of site isolation. J. Am. Chem. Soc. 130, 10496–10497 (2008).
Mäder, P. & Kattner, L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. J. Med. Chem. 63, 14243–14275 (2020).
Sun, Q. et al. Cascade reactions of aryl-substituted terminal alkynes involving in situ-generated α-imino gold carbenes. Angew. Chem. Int. Ed. 63, e202313738 (2024).
Xie, X. & Sun, J. [4+3]-cycloaddition reaction of sulfilimines with cyclobutenones: access to benzazepinones. Org. Lett. 23, 8921–8925 (2021).
Tian, X. et al. Sulfilimines as versatile nitrene transfer reagents: facile access to diverse aza-heterocycles. Angew. Chem. Int. Ed. 58, 3589–3593 (2019).
Okamura, H. & Bolm, C. Sulfoximines: synthesis and catalytic applications. Chem. Lett. 33, 482–487 (2004).
Klein, M., Troglauer, D. L. & Waldvogel, S. R. Dehydrogenative imination of low-valent sulfur compounds─fast and scalable synthesis of sulfilimines, sulfinamidines, and sulfinimidate esters. JACS Au 3, 575–583 (2023).
Bandlish, B. K., Padilla, A. G. & Shine, H. J. Ion radicals. XXXIII. Reactions of 10-methyl- and 10-phenylphenothiazine cation radicals with ammonia and amines. Preparation and reactions of 5-(N-alkyl)sulfilimines and 5-(N,N-dialkylamino)sulfonium salts. J. Org. Chem. 40, 2590–2595 (1975).
Shine, H. J. & Kim, K. Cation radicals. XXVII. Sulfilimine derivatives from reaction of thianthrene and N-phenylphenothiazine cation radicals with t-butylamine and dimethylamine. Tetrahedron Lett. 15, 99–101 (1974).
Marzag, H., Schuler, M., Tatibouët, A. & Reboul, V. Synthesis of methionine-derived endocyclic sulfilimines and sulfoximines. Eur. J. Org. Chem. 2017, 896–900 (2017).
Luan, D. et al. Cyclic regulation of the sulfilimine bond in peptides and NC1 hexamers via the HOBr/H2Se conjugated system. Anal. Chem. 90, 9523–9528 (2018).
Dannenberg, C. A., Bizet, V. & Bolm, C. Direct access to N-alkylsulfoximines from sulfides by a sequential imidation/oxidation procedure. Synthesis 47, 1951–1959 (2015).