Wednesday, January 22, 2025
No menu items!
HomeNatureContinuous collective analysis of chemical reactions

Continuous collective analysis of chemical reactions

  • Lehmann, J. W., Blair, D. J. & Burke, M. D. Towards the generalized iterative synthesis of small molecules. Nat. Rev. Chem. 2, 0115 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salley, D., Manzano, J. S., Kitson, P. J. & Cronin, L. Robotic modules for the programmable chemputation of molecules and materials. ACS Cent. Sci. 9, 1525–1537 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth. 2, 483–492 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Santanilla, A. B. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2014).

    Article 

    Google Scholar
     

  • Mahjour, B. et al. Rapid planning and analysis of high-throughput experiment arrays for reaction discovery. Nat. Commun. 14, 3924 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osipyan, A. et al. Automated, accelerated nanoscale synthesis of iminopyrrolidines. Angew. Chem. Int. Ed. 59, 12423–12427 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Accelerating pharmaceutical process development with an acoustic droplet ejection-multiple reaction monitoring-mass spectrometry workflow. Anal. Chem. 96, 1138–1146 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DiRico, K. J. et al. Ultra-high-throughput acoustic droplet ejection-open port interface-mass spectrometry for parallel medicinal chemistry. ACS Med. Chem. Lett. 11, 1101–1110 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blair, D. J. et al. Automated iterative Csp3–C bond formation. Nature 604, 92–97 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitson, P. J. et al. Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359, 314–319 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Rapid automated iterative small-molecule synthesis. Nat. Synth. 3, 1031–1038 (2024).

    Article 

    Google Scholar
     

  • Bonde, M. T. et al. Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. ACS Synth. Biol. 4, 17–22 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, J. et al. Efficient closed-loop maximization of carbon nanotube growth rate using Bayesian optimization. Sci. Rep. 10, 9040 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rinehart, N. I. et al. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C-N couplings. Science 381, 965–972 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grainger, R. & Whibley, S. A perspective on the analytical challenges encountered in high-throughput experimentation. Org. Process Res. Rev. 25, 354–364 (2021).

    CAS 

    Google Scholar
     

  • Lin, S. et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 361, eaar6236 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • King-Smith, E. et al. Probing the chemical ‘reactome’ with high-throughput experimentation data. Nat. Chem. 16, 633–643 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angello, N. H. et al. Closed-loop optimization of general reaction condtions for heteroaryl Suzuki-Miyaura coupling. Science 378, 399–405 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. Y. et al. Identifying general reaction conditions by bandit optimization. Nature 626, 1025–1033 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Q. et al. Sample multiplexing-based targeted pathway proteomics with real-time analytics reveals the impact of genetic variation on protein expression. Nat. Commun. 14, 555 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoen, A. E. et al. A hybrid BEQQ mass spectrometer. Int. J. Mass Spectrom. Ion Process. 65, 125–140 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nishiguchi, G. et al. Evaluating and evolving a screening library in academia: the St Jude Approach. Drug Discov. Today 26, 1060–1069 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aisporna, A. et al. Neutral loss mass spectral data enhances molecular similarity analysis in METLIN. J. Am. Soc. Mass. Spectrom. 33, 530–534 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Y., Kind, T., Yang, D., Leon, C. & Fiehn, O. MS2Analyzer: a software for small molecule substructure annotations from accurate tandem mass spectra. Anal. Chem. 86, 10724–10731 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherwood, C. A. et al. Rapid optimization of MRM-MS instrument parameters by subtle alteration of precursor and product m/z targets. J. Proteome Res. 8, 3746–3751 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubey, R., Hull, D. W., Lai, S., Ming-Hui, C. & Grant, D. F. Correction of precursor and product ion relative abundances in order to standardize CID spectra and improve Ecom50 accuracy for non-targeted metabolomics. Metabolomics 11, 753–763 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verardo, G. & Gorassini, A. Characterization of N-Boc/Fmoc/Z-N′-formyl-gem-diaminoalkyl derivatives using electrospray ionization multi-stage mass spectrometry. J. Mass Spectrom. 48, 1136–1149 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruzicka, J., Weisbecker, C. & Attygalle, A. B. Collision-induced dissociation mass spectra of positive ions derived from tetrahydropyranyl (THP) ethers of primary alcohols. J. Mass Spectrom. 46, 12–23 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Llano-Sotelo, B. et al. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob. Agents Chemother. 54, 4961–4970 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maji, A. et al. Tuning sterol extraction kinetics yields a renal-sparing polyene antifungal. Nature 623, 1079–1085 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konstantinidou, M. & Arkin, M. R. Molecular glues for protein-protein interactions: progressing toward a new dream. Cell Chem. Biol. 31, 1064–1088 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prieto Kullmer, C. N. et al. Accelerating reaction generality and mechanistic insight through additive mapping. Science 376, 532–539 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments