Thursday, December 12, 2024
No menu items!
HomeNatureNative DGC structure rationalizes muscular dystrophy-causing mutations

Native DGC structure rationalizes muscular dystrophy-causing mutations

  • Hoffman, E. P., Brown, R. H. Jr. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mercuri, E., Bonnemann, C. G. & Muntoni, F. Muscular dystrophies. Lancet 394, 2025–2038 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Koenig, M. et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell, K. P. & Kahl, S. D. Association of dystrophin and an integral membrane glycoprotein. Nature 338, 259–262 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, M. & Ozawa, E. Glycoprotein complex anchoring dystrophin to sarcolemma. J. Biochem. 108, 748–752 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ervasti, J. M. & Campbell, K. P. Membrane organization of the dystrophin–glycoprotein complex. Cell 66, 1121–1131 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Q. Q. & McNally, E. M. The dystrophin complex: structure, function, and implications for therapy. Compr. Physiol. 5, 1223–1239 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guiraud, S. et al. The pathogenesis and therapy of muscular dystrophies. Annu. Rev. Genomics Hum. Genet. 16, 281–308 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le, S. et al. Dystrophin as a molecular shock absorber. ACS Nano 12, 12140–12148 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pilgram, G. S., Potikanond, S., Baines, R. A., Fradkin, L. G. & Noordermeer, J. N. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol. Neurobiol. 41, 1–21 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirouse, V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front. Cell. Dev. Biol. 11, 1182524 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayasinha, V. et al. Inhibition of dystroglycan cleavage causes muscular dystrophy in transgenic mice. Neuromuscul. Disord. 13, 365–375 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Endo, T. Glycobiology of α-dystroglycan and muscular dystrophy. J. Biochem. 157, 1–12 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esapa, C. T., Bentham, G. R., Schroder, J. E., Kroger, S. & Blake, D. J. The effects of post-translational processing on dystroglycan synthesis and trafficking. FEBS Lett. 555, 209–216 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, K. et al. Detection of variants in dystroglycanopathy-associated genes through the application of targeted whole-exome sequencing analysis to a large cohort of patients with unexplained limb-girdle muscle weakness. Skelet. Muscle 8, 23 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waite, A., Brown, S. C. & Blake, D. J. The dystrophin–glycoprotein complex in brain development and disease. Trends Neurosci. 35, 487–496 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williamson, R. A. et al. Dystroglycan is essential for early embryonic development: disruption of Reichert’s membrane in Dag1-null mice. Hum. Mol. Genet. 6, 831–841 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noguchi, S. et al. Mutations in the dystrophin-associated protein γ-sarcoglycan in chromosome 13 muscular dystrophy. Science 270, 819–822 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberds, S. L. et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 78, 625–633 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duclos, F. et al. Progressive muscular dystrophy in α-sarcoglycan-deficient mice. J. Cell Biol. 142, 1461–1471 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, L. E. et al. β-Sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat. Genet. 11, 257–265 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonnemann, C. G. et al. β-Sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat. Genet. 11, 266–273 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nigro, V. et al. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the δ-sarcoglycan gene. Nat. Genet. 14, 195–198 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noguchi, S., Wakabayashi, E., Imamura, M., Yoshida, M. & Ozawa, E. Formation of sarcoglycan complex with differentiation in cultured myocytes. Eur. J. Biochem. 267, 640–648 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, W. et al. Specific assembly pathway of sarcoglycans is dependent on β- and δ-sarcoglycan. Muscle Nerve 29, 409–419 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hemler, M. E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 19, 397–422 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crosbie, R. H., Heighway, J., Venzke, D. P., Lee, J. C. & Campbell, K. P. Sarcospan, the 25-kDa transmembrane component of the dystrophin–glycoprotein complex. J. Biol. Chem. 272, 31221–31224 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lebakken, C. S. et al. Sarcospan-deficient mice maintain normal muscle function. Mol. Cell. Biol. 20, 1669–1677 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, J. L. et al. Dystrophin and utrophin expression require sarcospan: loss of α7 integrin exacerbates a newly discovered muscle phenotype in sarcospan-null mice. Hum. Mol. Genet. 21, 4378–4393 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, J. L. et al. Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. J. Cell Biol. 197, 1009–1027 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peter, A. K., Miller, G. & Crosbie, R. H. Disrupted mechanical stability of the dystrophin–glycoprotein complex causes severe muscular dystrophy in sarcospan transgenic mice. J. Cell Sci. 120, 996–1008 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, A. et al. Molecular organization at the glycoprotein-complex-binding site of dystrophin. Three dystrophin-associated proteins bind directly to the carboxy-terminal portion of dystrophin. Eur. J. Biochem. 220, 283–292 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, D., Yang, B., Meyer, J., Chamberlain, J. S. & Campbell, K. P. Identification and characterization of the dystrophin anchoring site on β-dystroglycan. J. Biol. Chem. 270, 27305–27310 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponting, C. P., Blake, D. J., Davies, K. E., Kendrick-Jones, J. & Winder, S. J. ZZ and TAZ: new putative zinc fingers in dystrophin and other proteins. Trends Biochem. Sci 21, 11–13 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rentschler, S. et al. The WW domain of dystrophin requires EF-hands region to interact with β-dystroglycan. Biol. Chem. 380, 431–442 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishikawa-Sakurai, M., Yoshida, M., Imamura, M., Davies, K. E. & Ozawa, E. ZZ domain is essentially required for the physiological binding of dystrophin and utrophin to β-dystroglycan. Hum. Mol. Genet. 13, 693–702 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swiderski, K. et al. Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting. Hum. Mol. Genet. 23, 6697–6711 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadoulet-Puccio, H. M., Rajala, M. & Kunkel, L. M. Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc. Natl Acad. Sci. USA 94, 12413–12418 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grady, R. M. et al. Role for α-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat. Cell Biol. 1, 215–220 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grady, R. M. et al. Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin–glycoprotein complex. Neuron 25, 279–293 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grady, R. M. et al. Tyrosine-phosphorylated and nonphosphorylated isoforms of α-dystrobrevin: roles in skeletal muscle and its neuromuscular and myotendinous junctions. J. Cell Biol. 160, 741–752 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, A. H. & Kunkel, L. M. Syntrophin binds to an alternatively spliced exon of dystrophin. J. Cell Biol. 128, 363–371 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Structure of a WW domain containing fragment of dystrophin in complex with β-dystroglycan. Nat. Struct. Mol. Biol. 7, 634–638 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Bozic, D., Sciandra, F., Lamba, D. & Brancaccio, A. The structure of the N-terminal region of murine skeletal muscle α-dystroglycan discloses a modular architecture. J. Biol. Chem. 279, 44812–44816 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norwood, F. L., Sutherland-Smith, A. J., Keep, N. H. & Kendrick-Jones, J. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure 8, 481–491 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borgert, A., Foley, B. L. & Live, D. Contrasting the conformational effects of α-O-GalNAc and α-O-Man glycan protein modifications and their impact on the mucin-like region of α-dystroglycan. Glycobiology 31, 649–661 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagata, Y. & Burger, M. M. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J. Biol. Chem. 249, 3116–3122 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dwyer, T. M. & Froehner, S. C. Direct binding of Torpedo syntrophin to dystrophin and the 87 kDa dystrophin homologue. FEBS Lett. 375, 91–94 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinbacher, S. et al. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stummeyer, K., Dickmanns, A., Muhlenhoff, M., Gerardy-Schahn, R. & Ficner, R. Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat. Struct. Mol. Biol. 12, 90–96 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, Y. M., Bonnemann, C. G., Lidov, H. G. & Kunkel, L. M. Molecular organization of sarcoglycan complex in mouse myotubes in culture. J. Cell Biol. 143, 2033–2044 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yis, U. et al. Childhood onset limb-girdle muscular dystrophies in the Aegean part of Turkey. Acta Myol. 37, 210–220 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitraki, A., Papanikolopoulou, K. & Van Raaij, M. J. Natural triple β-stranded fibrous folds. Adv. Protein Chem. 73, 97–124 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, M. et al. Dissociation of the complex of dystrophin and its associated proteins into several unique groups by n-octyl β-d-glucoside. Eur. J. Biochem. 222, 1055–1061 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, M. et al. The fourth component of the sarcoglycan complex. FEBS Lett. 403, 143–148 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macao, B., Johansson, D. G., Hansson, G. C. & Hard, T. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat. Struct. Mol. Biol. 13, 71–76 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holm, L., Laiho, A., Toronen, P. & Salgado, M. DALI shines a light on remote homologs: one hundred discoveries. Protein Sci. 32, e4519 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vickers, C. et al. Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to α-l-fucosidases from GH29. J. Biol. Chem. 293, 18296–18308 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crosbie, R. H. et al. Molecular and genetic characterization of sarcospan: insights into sarcoglycan–sarcospan interactions. Hum. Mol. Genet. 9, 2019–2027 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraiberg, M., Borovok, I., Bayer, E. A., Weiner, R. M. & Lamed, R. Cadherin domains in the polysaccharide-degrading marine bacterium Saccharophagus degradans 2-40 are carbohydrate-binding modules. J. Bacteriol. 193, 283–285 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, L. et al. CHDL: a cadherin-like domain in Proteobacteria and Cyanobacteria. FEMS Microbiol. Lett. 251, 203–209 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bork, P. & Patthy, L. The SEA module: a new extracellular domain associated with O-glycosylation. Protein Sci. 4, 1421–1425 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemler, M. E. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 6, 801–811 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charrin, S., Jouannet, S., Boucheix, C. & Rubinstein, E. Tetraspanins at a glance. J. Cell Sci. 127, 3641–3648 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Susa, K. J., Kruse, A. C. & Blacklow, S. C. Tetraspanins: structure, dynamics, and principles of partner-protein recognition. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2023.09.003 (2023).

  • Miller, G., Wang, E. L., Nassar, K. L., Peter, A. K. & Crosbie, R. H. Structural and functional analysis of the sarcoglycan–sarcospan subcomplex. Exp. Cell. Res. 313, 639–651 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crosbie, R. H. et al. Membrane targeting and stabilization of sarcospan is mediated by the sarcoglycan subcomplex. J. Cell Biol. 145, 153–165 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peter, A. K., Marshall, J. L. & Crosbie, R. H. Sarcospan reduces dystrophic pathology: stabilization of the utrophin–glycoprotein complex. J. Cell Biol. 183, 419–427 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, G., Peter, A. K., Espinoza, E., Heighway, J. & Crosbie, R. H. Over-expression of Microspan, a novel component of the sarcoplasmic reticulum, causes severe muscle pathology with triad abnormalities. J. Muscle Res. Cell Motil. 27, 545–558 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peter, A. K. et al. Nanospan, an alternatively spliced isoform of sarcospan, localizes to the sarcoplasmic reticulum in skeletal muscle and is absent in limb girdle muscular dystrophy 2F. Skelet. Muscle 7, 11 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida, M. et al. Biochemical evidence for association of dystrobrevin with the sarcoglycan–sarcospan complex as a basis for understanding sarcoglycanopathy. Hum. Mol. Genet. 9, 1033–1040 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rafael, J. A. et al. Forced expression of dystrophin deletion constructs reveals structure-function correlations. J. Cell Biol. 134, 93–102 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crawford, G. E. et al. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J. Cell Biol. 150, 1399–1410 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoder, M. D., Keen, N. T. & Jurnak, F. New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science 260, 1503–1507 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P., Charles, I. G., Fairweather, N. F. & Isaacs, N. W. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381, 90–92 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petersen, T. N., Kauppinen, S. & Larsen, S. The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel β helix. Structure 5, 533–544 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibbs, E. M. et al. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD. Hum. Mol. Genet. 25, 5395–5406 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parvatiyar, M. S. et al. Sarcospan regulates cardiac isoproterenol response and prevents Duchenne muscular dystrophy-associated cardiomyopathy. J. Am. Heart Assoc. 4, e002481 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holt, K. H. et al. Functional rescue of the sarcoglycan complex in the BIO 14.6 hamster using δ-sarcoglycan gene transfer. Mol. Cell 1, 841–848 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts, T. C., Wood, M. J. A. & Davies, K. E. Therapeutic approaches for Duchenne muscular dystrophy. Nat. Rev. Drug Discov. 22, 917–934 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yue, Y., Liu, M. & Duan, D. C-terminal-truncated microdystrophin recruits dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex and reduces muscular dystrophy in symptomatic utrophin/dystrophin double-knockout mice. Mol. Ther. 14, 79–87 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, R. D., Palade, P. & Fleischer, S. Purification of morphologically intact triad structures from skeletal muscle. J. Cell Biol. 96, 1008–1016 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ervasti, J. M., Kahl, S. D. & Campbell, K. P. Purification of dystrophin from skeletal muscle. J. Biol. Chem. 266, 9161–9165 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimanius, D. et al. Data-driven regularization lowers the size barrier of cryo-EM structure determination. Nat Methods 21, 1216-1221, doi:10.1038/s41592-024-02304-8 (2024).

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature https://doi.org/10.1038/s41586-024-07487-w (2024).

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchan, D. W. A. & Jones, D. T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments