Langley, J. N. The Autonomic Nervous System (Pt. I) (Heffer, 1921).
Wachsmuth, H. R., Weninger, S. N. & Duca, F. A. Role of the gutâbrain axis in energy and glucose metabolism. Exp. Mol. Med. 54, 377â392 (2022).
Veerakumar, A., Yung, A. R., Liu, Y. & Krasnow, M. A. Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature 606, 739â746 (2022).
Lovelace, J. W. et al. Vagal sensory neurons mediate the BezoldâJarisch reflex and induce syncope. Nature 623, 387â396 (2023).
Xiao, R. & Xu, X. Z. S. Temperature sensation: from molecular thermosensors to neural circuits and coding principles. Annu. Rev. Physiol. 83, 205â230 (2021).
Mota, C. M. D. & Madden, C. J. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat. Rev. Neurosci. 25, 143â158 (2024).
Chang, R. B., Strochlic, D. E., Williams, E. K., Umans, B. D. & Liberles, S. D. Vagal sensory neuron subtypes that differentially control breathing. Cell 161, 622â633 (2015).
Chen, C. et al. Long-term imaging of dorsal root ganglia in awake behaving mice. Nat. Commun. 10, 3087 (2019).
Goldstein, N. et al. Hypothalamic detection of macronutrients via multiple gutâbrain pathways. Cell Metab. 33, 676â687.e5 (2021).
Ichiki, T. et al. Sensory representation and detection mechanisms of gut osmolality change. Nature 602, 468â474 (2022).
Wolfson, R. L. et al. DRG afferents that mediate physiologic and pathologic mechanosensation from the distal colon. Cell 186, 3368â3385.e18 (2023).
Bayrer, J. R. et al. Gut enterochromaffin cells drive visceral pain and anxiety. Nature 616, 137â142 (2023).
Langley, J. N. Sketch of the progress of discovery in the eighteenth century as regards the autonomic nervous system. J. Physiol. 50, 225â258 (1916).
Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335â346 (2006).
Goldstein, D. S. Differential responses of components of the autonomic nervous system. Handb. Clin. Neurol. 117, 13â22 (2013).
Lin, E. E., Scott-Solomon, E. & Kuruvilla, R. Peripheral innervation in the regulation of glucose homeostasis. Trends Neurosci. 44, 189â202 (2021).
Nakamura, K., Nakamura, Y. & Kataoka, N. A hypothalamomedullary network for physiological responses to environmental stresses. Nat. Rev. Neurosci. 23, 35â52 (2022).
Tao, J. et al. Highly selective brain-to-gut communication via genetically defined vagus neurons. Neuron 109, 2106â2115.e4 (2021).
Sharkey, K. A., Williams, R. G. & Dockray, G. J. Sensory substance P innervation of the stomach and pancreas. Demonstration of capsaicin-sensitive sensory neurons in the rat by combined immunohistochemistry and retrograde tracing. Gastroenterology 87, 914â921 (1984).
Trudrung, P., Furness, J. B., Pompolo, S. & Messenger, J. P. Locations and chemistries of sympathetic nerve cells that project to the gastrointestinal tract and spleen. Arch. Histol. Cytol. 57, 139â150 (1994).
Quinson, N., Robbins, H. L., Clark, M. J. & Furness, J. B. Locations and innervation of cell bodies of sympathetic neurons projecting to the gastrointestinal tract in the rat. Arch. Histol. Cytol. 64, 281â294 (2001).
Torres, H. et al. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 321, R328âR337 (2021).
Chan, K. L., Poller, W. C., Swirski, F. K. & Russo, S. J. Central regulation of stress-evoked peripheral immune responses. Nat. Rev. Neurosci. 24, 591â604 (2023).
Scott-Solomon, E., Boehm, E. & Kuruvilla, R. The sympathetic nervous system in development and disease. Nat. Rev. Neurosci. 22, 685â702 (2021).
Kuntz, A. & Jacobs, M. W. Components of periarterial extensions of celiac and mesenteric plexuses. Anat. Rec. 123, 509â520 (1955).
Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gutâbrain circuit. Nature 583, 441â446 (2020).
Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235â239 (2019).
Furlan, A. et al. Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nat. Neurosci. 19, 1331â1340 (2016).
Mapps, A. A. et al. Diversity of satellite glia in sympathetic and sensory ganglia. Cell Rep. 38, 110328 (2022).
Kumari, R. et al. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. Cell Rep. 43, 113674 (2024).
Lindh, B. et al. Topography of NPY-, somatostatin-, and VIP-immunoreactive, neuronal subpopulations in the guinea pig celiac-superior mesenteric ganglion and their projection to the pylorus. J. Neurosci. 6, 2371â2383 (1986).
Lindh, B., Hökfelt, T. & Elfvin, L. G. Distribution and origin of peptide-containing nerve fibers in the celiac superior mesenteric ganglion of the guinea-pig. Neuroscience 26, 1037â1071 (1988).
Miolan, J. P. & Niel, J. P. The mammalian sympathetic prevertebral ganglia: integrative properties and role in the nervous control of digestive tract motility. J. Auton. Nerv. Syst. 58, 125â138 (1996).
Kaestner, C. L., Smith, E. H., Peirce, S. G. & Hoover, D. B. Immunohistochemical analysis of the mouse celiac ganglion: an integrative relay station of the peripheral nervous system. J. Comp. Neurol. 527, 2742â2760 (2019).
Sun, C., Zhang, T., Liu, C., Gu, S. & Chen, Y. Generation of Shox2-Cre allele for tissue specific manipulation of genes in the developing heart, palate, and limb. Genesis 51, 515â522 (2013).
Hama, H. et al. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518â1529 (2015).
Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339â1368 (2014).
Beckh, K. & Arnold, R. Regulation of bile secretion by sympathetic nerves in perfused rat liver. Am. J. Physiol. 261, G775âG780 (1991).
Ali, A. E., Rutishauser, S. C. & Case, R. M. Pancreatic and biliary secretion in the anesthetized Syrian golden hamster in response to secretin, cholecystokinin-octapeptide, bombesin, and carbachol. Pancreas 5, 314â322 (1990).
Marliss, E. B. et al. Glucagon release induced by pancreatic nerve stimulation in the dog. J. Clin. Invest. 52, 1246â1259 (1973).
Ahrén, B., Veith, R. C. & Taborsky, G. J. Sympathetic nerve stimulation versus pancreatic norepinephrine infusion in the dog: 1). Effects on basal release of insulin and glucagon. Endocrinology 121, 323â331 (1987).
Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517â528 (2016).
Servin-Vences, M. R. et al. PIEZO2 in somatosensory neurons controls gastrointestinal transit. Cell 186, 3386â3399.e15 (2023).
Cannon, W. B. The Wisdom of the Body 2nd edn (Norton & Co., 1939).
Seals, D. R. & Victor, R. G. Regulation of muscle sympathetic nerve activity during exercise in humans. Exerc. Sport Sci. Rev. 19, 313â349 (1991).
Jänig, W. & McLachlan, E. M. Characteristics of function-specific pathways in the sympathetic nervous system. Trends Neurosci. 15, 475â481 (1992).
Morrison, S. F. Differential control of sympathetic outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R683âR698 (2001).
Gonsalvez, D. G., Kerman, I. A., McAllen, R. M. & Anderson, C. R. Chemical coding for cardiovascular sympathetic preganglionic neurons in rats. J. Neurosci. 30, 11781â11791 (2010).
Wang, M., Wang, Q. & Whim, M. D. Fasting induces a form of autonomic synaptic plasticity that prevents hypoglycemia. Proc. Natl Acad. Sci. USA 113, E3029âE3038 (2016).
Pool, A.-H. et al. The cellular basis of distinct thirst modalities. Nature 588, 112â117 (2020).
Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. and Dalca, A. V. VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38, 1788â1800 (2019).
Dalca, A. V., Rakic, M., Guttag, J. & Sabuncu, M. in Advances in Neural Information Processing Systems Vol. 32 (Curran Associates, Inc., 2019).
Carrier, G. O. & Ikeda, S. R. TTX-sensitive Na+ channels and Ca2+ channels of the L- and N-type underlie the inward current in acutely dispersed coeliac-mesenteric ganglia neurons of adult rats. Pflugers Arch. 421, 7â16 (1992).
Pool, A.-H., Poldsam, H., Chen, S., Thomson, M. & Oka, Y. Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references. Nat. Methods 20, 1506â1515 (2023).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411â420 (2018).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289â1296 (2019).
Wang, T. & Oka, Y. Celiac-superior mesenteric ganglia (CG-SMG) innervation. Zenodo https://doi.org/10.5281/zenodo.13306861 (2024).
Tongtong, W. & Oka, Y. Celiac-superior mesenteric ganglia (CG-SMG) spatial transcriptomics. Zenodo https://doi.org/10.5281/zenodo.13883320 (2024).