Saturday, November 23, 2024
No menu items!
HomeNatureFibular reduction and the evolution of theropod locomotion

Fibular reduction and the evolution of theropod locomotion

  • Hampé, A. Le développement du péroné dans les experiences sur la régulation des déficiences et des excédents dans la patte du Poulet. Development 6, 215–222 (1958).

  • Wolff, E. & Hampé, A. Sur la régulation de la patte du poulet après résection d’un segment intermédiaire du bourgeon de membre. Compt. Rend. Soc. Biol. 148, 154–156 (1954).

    CAS 

    Google Scholar
     

  • Botelho, J. F. et al. Molecular development of fibular reduction in birds and its evolution from dinosaurs. Evolution 70, 543–554 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goff, D. J. & Tabin, C. J. Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth. Development 124, 627–636 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, G. B. & Streicher, J. Ontogeny of the syndesmosis tibiofibularis and the evolution of the bird hindlimb: a caenogenetic feature triggers phenotypic novelty. Anat. Embryol. 179, 327–339 (1989).

    Article 

    Google Scholar
     

  • Streicher, J. & Müller, G. B. Natural and experimental reduction of the avian fibula: developmental thresholds and evolutionary constraint. J. Morphol. 214, 269–285 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Kambic, R. E., Roberts, T. J. & Gatesy, S. M. Long-axis rotation: a missing degree of freedom in avian bipedal locomotion. J. Exp. Biol. 217, 2770–2782 (2014).

    PubMed 

    Google Scholar
     

  • Farlow, J. O., Gatesy, S. M., Holtz, T. R. Jr, Hutchinson, J. R. & Robinson, J. M. Theropod locomotion. Am. Zool. 40, 640–663 (2000).


    Google Scholar
     

  • Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zelenitsky, D. K. et al. Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338, 510–514 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dial, K. P. Evolution of avian locomotion: correlates of flight style, locomotor modules, nesting biology, body size, development, and the origin of flapping flight. The Auk 120, 941–952 (2003).

    Article 

    Google Scholar
     

  • Bhullar, B. A. S. et al. Birds have paedomorphic dinosaur skulls. Nature 487, 223–226 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bout, R. G. & Zweers, G. A. The role of cranial kinesis in birds. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131, 197–205 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brainerd, E. L. et al. X‐ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J. Exp. Zool. A Ecol. Genet. Physiol. 313, 262–279 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gatesy, S. M., Baier, D. B., Jenkins, F. A. & Dial, K. P. Scientific rotoscoping: a morphology‐based method of 3‐D motion analysis and visualization. J. Exp. Zool. A Ecol. Genet. Physiol. 313, 244–261 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Landsmeer, J. M. Functional morphology of the hindlimb in some lacertilia. Eur. J. Morphol. 28, 3–34 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Fuss, F. K. Tibiofibular junction of the South African ostrich (Struthio camelus australis). J. Morphol. 227, 213–226 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Gatesy, S. M. et al. A proposed standard for quantifying 3‐D hindlimb joint poses in living and extinct archosaurs. J. Anat. 241, 101–118 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hertel, F. & Campbell, K. E. Jr The antitrochanter of birds: form and function in balance. The Auk 124, 789–805 (2007).

    Article 

    Google Scholar
     

  • Manafzadeh, A. R., Kambic, R. E. & Gatesy, S. M. A new role for joint mobility in reconstructing vertebrate locomotor evolution. Proc. Natl Acad. Sci. USA 118, e2023513118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manafzadeh, A. R. A practical guide to measuring ex vivo joint mobility using XROMM. Integr. Org. Biol. 2, obaa041 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manafzadeh, A. R. Joint mobility as a bridge between form and function. J. Exp. Biol. 226, jeb245042 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Manafzadeh, A. R., Gatesy, S. M. & Bhullar, B. A. S. Articular surface interactions distinguish dinosaurian locomotor joint poses. Nat. Commun. 15, 854 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumel, J. J., King, A. S., Lucas, A. M., Breazile, J. E. & Evans, H. E. (eds) Nomina Anatomica Avium: an Annotated Anatomical Aictionary of Birds (1981).

  • Haines, R. W. The tetrapod knee joint. J. Anat. 76, 270–301 (1942).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes, R. B. The hind limb of Captorhinus aguti and the step cycle of basal amniotes. Can. J. Earth Sci. 40, 515–526 (2003).

    Article 

    Google Scholar
     

  • Vaughn, P. P. The Permian reptile Araeoscelis restudied. Bull. Mus. Comp. Zool. 113, 303–467 (1955).


    Google Scholar
     

  • Allain, R., Vullo, R., Le Loeuff, J. & Tournepiche, J. F. European ornithomimosaurs (Dinosauria, Theropoda): an undetected record. Geol. Acta 12, 127–135 (2014).


    Google Scholar
     

  • Rauhut, O. W. & Pol, D. Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs. Sci. Rep. 9, 18826 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, M. A. et al. New Australovenator hind limb elements pertaining to the holotype reveal the most complete neovenatorid leg. PLoS ONE 8, e68649 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novas, F. E., Egli, F. B., Agnolin, F. L., Gianechini, F. A. & Cerda, I. Postcranial osteology of a new specimen of Buitreraptor gonzalezorum (Theropoda, Unenlagiidae). Cretaceous Res. 83, 127–167 (2018).

    Article 

    Google Scholar
     

  • Xu, X., Norell, M. A., Wang, X. L., Makovicky, P. J. & Wu, X. C. A basal troodontid from the Early Cretaceous of China. Nature 415, 780–784 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zanno, L. E. Osteology of Falcarius utahensis (Dinosauria: Theropoda): characterizing the anatomy of basal therizinosaurs. Zool. J. Linn. Soc. 158, 196–230 (2010).

    Article 

    Google Scholar
     

  • Forster, C. A., Chiappe, L. M., Krause, D. W. & Sampson, S. D. The first Cretaceous bird from Madagascar. Nature 382, 532–534 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kurochkin, E. N. & Molnar, R. E. New material of enantiornithine birds from the Early Cretaceous of Australia. Alcheringa 21, 291–297 (1997).

    Article 

    Google Scholar
     

  • Zinoviev, A. V. Notes on the hindlimb myology and syndesmology of the Mesozoic toothed bird Hesperornis regalis (Aves: Hesperornithiformes). J. Syst. Paleontol. 9, 65–84 (2011).

    Article 

    Google Scholar
     

  • Rewcastle, S. C. Fundamental adaptations in the lacertilian hind limb: a partial analysis of the sprawling limb posture and gait. Copeia 2, 476–487 (1983).

  • Schaeffer, B. The morphological and functional evolution of the tarsus in amphibians and reptiles. Bull. Am. Mus. Nat. Hist. 78, 6 (1941).


    Google Scholar
     

  • Turner, M. L. & Gatesy, S. M. Inner workings of the alligator ankle reveal the mechanistic origins of archosaur locomotor diversity. J. Anat. 242, 592–606 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. Bull. Am. Mus. Nat. Hist. 2012, 1–206 (2012).

    Article 

    Google Scholar
     

  • Xu, X. et al. Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution. Curr. Biol. 28, 2853–2860 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novas, F. E. Anatomy of Patagonykus puertai (Theropoda, Avialae, Alvarezsauridae), from the late Cretaceous of Patagonia. J. Vertebr. Paleontol. 17, 137–166 (1997).

    Article 

    Google Scholar
     

  • Altangerel, P., Norell, M. A., Chiappe, L. M. & Clark, J. M. Flightless bird from the Cretaceous of Mongolia. Nature 362, 623–626 (1993).

    Article 

    Google Scholar
     

  • Funston, G. F., Currie, P. J., Ryan, M. J. & Dong, Z. M. Birdlike growth and mixed-age flocks in avimimids (Theropoda, Oviraptorosauria). Sci. Rep. 9, 18816 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Currie, P. J., Funston, G. F. & Osmólska, H. New specimens of the crested theropod dinosaur Elmisaurus rarus from Mongolia. Acta Palaeontol. Pol. 61, 143–157 (2015).


    Google Scholar
     

  • Galton, P. M. Avian-like tibiotarsi of pterodactyloids (Reptilia: Pterosauria) from the Upper Jurassic of East Africa. Paläontologische Zeitschrift 54, 331–342 (1980).

    Article 

    Google Scholar
     

  • Gatesy, S. M. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16, 170–186 (1990).

    Article 

    Google Scholar
     

  • Allen, V., Bates, K. T., Li, Z. & Hutchinson, J. R. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs. Nature 497, 104–107 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erwin, D. H. Novelty and innovation in the history of life. Curr. Biol. 25, R930–R940 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernández, L. P., Barresi, M. J. & Devoto, S. H. Functional morphology and developmental biology of zebrafish: reciprocal illumination from an unlikely couple. Integr. Comp. Biol. 42, 222–231 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Tsai, H. P., Turner, M. L., Manafzadeh, A. R. & Gatesy, S. M. Contrast‐enhanced XROMM reveals in vivo soft tissue interactions in the hip of Alligator mississippiensis. J. Anat. 236, 288–304 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Knörlein, B. J., Baier, D. B., Gatesy, S. M., Laurence-Chasen, J. D. & Brainerd, E. L. Validation of XMALab software for marker-based XROMM. J. Exp. Biol. 219, 3701–3711 (2016).

    PubMed 

    Google Scholar
     

  • Turner, M. L. & Gatesy, S. M. Alligators employ intermetatarsal reconfiguration to modulate plantigrade ground contact. J. Exp. Biol. 224, jeb242240 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyakatura, J. A. et al. Reverse-engineering the locomotion of a stem amniote. Nature 565, 351–355 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Egawa, S. et al. The dinosaurian femoral head experienced a morphogenetic shift from torsion to growth along the avian stem. Proc. R. Soc. B 289, 20220740 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments