Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634â638 (2019).
Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385â389 (2020).
Chao, W.-C. et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2, 96 (2021).
Wu, Q. et al. Quasiâshellâgrowth strategy achieves stable and efficient green InP quantum dot lightâemitting diodes. Adv. Sci. 9, 2200959 (2022).
Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354â357 (1994).
Coe, S., Woo, W.-K., Bawendi, M. & BuloviÄ, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800â803 (2002).
Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96â99 (2014).
GarcÃa de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).
Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505â511 (2022).
Xu, H. et al. Dipoleâdipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photon. 18, 186â191 (2024).
Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297â303 (2022).
Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantumâdot lightâemitting diodes for largeâarea displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).
Madelung, O. Semiconductors: Group IV Elements and III-V Compounds (Springer Science & Business Media, 2012).
Yu, P. et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 11, 162 (2022).
Li, B., Tang, B., Fan, F. & Du, J. Transient absorption spectrometer using excitation by pulse current. CN Patent CN112683797B (2021).
Gao, Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 18, 1168â1174 (2023).
Klimov, V. I., Mikhailovsky, A. A., McBranch, D., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011â1013 (2000).
Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112â6123 (2000).
Livache, C. et al. High-efficiency photoemission from magnetically doped quantum dots driven by multi-step spin-exchange Auger ionization. Nat. Photon. 16, 433â440 (2022).
Karpov, S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quantum Electron. 47, 1293â1303 (2015).
Ishioka, K., Barker, B. G. Jr, Yanagida, M., Shirai, Y. & Miyano, K. Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J. Phys. Chem. Lett. 8, 3902â3907 (2017).
Yang, K., East, J. R. & Haddad, G. I. Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition. Solid State Electron. 36, 321â330 (1993).
Walker, A., Kambili, A. & Martin, S. Electrical transport modelling in organic electroluminescent devices. J. Phys. Condens. Matter 14, 9825 (2002).
Jung, S.-M. et al. Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes. npj Comput. Mater. 7, 122 (2021).
Burrows, P. & Forrest, S. Electroluminescence from trapâlimited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett. 64, 2285â2287 (1994).
Scholz, S., Kondakov, D., Lussem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449â8503 (2015).
Mude, N. N., Khan, Y., Thuy, T. T., Walker, B. & Kwon, J. H. Stable ZnS electron transport layer for high-performance inverted cadmium-free quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 14, 55925â55932 (2022).
Zhang, H. et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots. Adv. Opt. Mater. 7, 1801602 (2019).
Moon, H. et al. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 55, 13299â13302 (2019).
Iwasaki, Y., Motomura, G., Ogura, K. & Tsuzuki, T. Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 117, 111104 (2020).
Gao, P., Zhang, Y., Qi, P. & Chen, S. Efficient InP green quantum-dot light-emitting diodes based on organic electron transport layer. Adv. Opt. Mater. 10, 2202066 (2022).
Li, L. et al. Efficient and bright green InP quantum dot light-emitting diodes enabled by a self-assembled dipole interface monolayer. Nanoscale 15, 2837â2842 (2023).
Zhang, T. et al. Understanding and hindering the electron leakage in green InP quantum-dot light-emitting diodes. Adv. Photon. Res. 4, 2300146 (2023).
Wu, Q. et al. Bridging chloride anions enables efficient and stable InP green quantum-dot light-emitting diodes. Adv. Opt. Mater. 11, 2300659 (2023).
Shin, S. et al. Fluoride-free synthesis strategy for luminescent InP cores and effective shelling processes via combinational precursor chemistry. Chem. Eng. J. 466, 143223 (2023).
Wang, L., Fan, Z., Liu, D., Zhang, Z. & Zou, B. Modified charge injection in green InP quantum dot light-emitting diodes utilizing a plasma-enhanced NiO buffer layer. J. Phys. Chem. C 128, 3985â3993 (2024).
Zhang, T. et al. Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection. Nanoscale Adv. 5, 385â392 (2023).
Wang, Y. et al. Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. J. Mater. Chem. C 10, 8192 (2022).
Taylor, D. A. et al. Importance of surface functionalization and purification for narrow FWHM and bright green-emitting InP core-multishell quantum dots via a two-step growth process. Chem. Mater. 33, 4399â4407 (2021).
Hunsche, S., Dekorsy, T., Klimov, V. & Kurz, H. Ultrafast dynamics of carrier-induced absorption changes in highly-excited CdSe nanocrystals. Appl. Phys. B 62, 3â10 (1996).
Kumar, B., Campbell, S. A. & Paul Ruden, P. Modeling charge transport in quantum dot light emitting devices with NiO and ZnO transport layers and Si quantum dots. J. Appl. Phys. 114, 044507 (2013).
Gao, X. & Yee, S. S. Hole capture cross section and emission coefficient of defect centers related to high-field-induced positive charges in SiO2 layers. Solid State Electron. 39, 399â403 (1996).
Bian, Y. et al. Datasets for âEfficient green InP-based QD-LED by controlling electron injection and leakageâ. Figshare https://doi.org/10.6084/m9.figshare.27682983 (2024).
Lee, T. et al. Highly efficient and bright inverted top-emitting InP quantum dot light-emitting diodes introducing a hole-suppressing interlayer. Small 15, 1905162 (2019).
Kim, J. et al. Realization of highly efficient InP quantum dot light-emitting diodes through in-depth investigation of exciton-harvesting layers. Adv. Opt. Mater. 11, 2300088 (2023).
Lee, S. H. et al. ZnSeTe quantum dots as an alternative to InP and their high-efficiency electroluminescence. Chem. Mater. 32, 5768â5775 (2020).
Yoon, S. Y. et al. Highly emissive green ZnSeTe quantum dots: effects of core size on their optical properties and comparison with InP counterparts. ACS Energy Lett. 8, 1131â1140 (2023).
Sun, L. et al. Efficient and stable multiâcolor emissions of the coumarin modified Cs3LnCl6 leadâfree perovskite nanocrystals and led application. Adv. Mater. 36, 2310065 (2024).