Barber, M. E., Ma, E. Y. & Shen, Z.-X. Microwave impedance microscopy and its application to quantum materials. Nat. Rev. Phys. 4, 61â74 (2022).
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559â1562 (1982).
Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983).
Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984).
Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984).
Stern, A. Anyons and the quantum Hall effectâa pedagogical review. Ann. Phys. 323, 204â249 (2008).
Goldman, V. & Su, B. Resonant tunneling in the quantum Hall regime: measurement of fractional charge. Science 267, 1010â1012 (1995).
Martin, J. et al. Localization of fractionally charged quasi-particles. Science 305, 980â983 (2004).
Radu, I. P. et al. Quasi-particle properties from tunneling in the v = 5/2 fractional quantum Hall state. Science 320, 899â902 (2008).
De-Picciotto, R. et al. Direct observation of a fractional charge. Physica B 249, 395â400 (1998).
Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173â177 (2020).
Pascher, N. et al. Imaging the conductance of integer and fractional quantum Hall edge states. Phys. Rev. X 4, 011014 (2014).
Chang, A. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449 (2003).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).
Ashoori, R., Stormer, H., Pfeiffer, L., Baldwin, K. & West, K. Edge magnetoplasmons in the time domain. Phys. Rev. B 45, 3894 (1992).
Stuhl, B., Lu, H.-I., Aycock, L., Genkina, D. & Spielman, I. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514â1518 (2015).
Yao, R. et al. Observation of chiral edge transport in a rapidly rotating quantum gas. Nature https://doi.org/10.1038/s41567-024-02617-7 (2024).
Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510â1513 (2015).
Wang, Z., Chong, Y., Joannopoulos, J. D. & SoljaÄiÄ, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772â775 (2009).
Lai, K. et al. Imaging of Coulomb-driven quantum Hall edge states. Phys. Rev. Lett. 107, 176809 (2011).
Cui, Y.-T. et al. Unconventional correlation between quantum Hall transport quantization and bulk state filling in gated graphene devices. Phys. Rev. Lett. 117, 186601 (2016).
Yacoby, A., Hess, H., Fulton, T., Pfeiffer, L. & West, K. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1â13 (1999).
Suddards, M., Baumgartner, A., Henini, M. & Mellor, C. J. Scanning capacitance imaging of compressible and incompressible quantum Hall effect edge strips. New J. Phys. 14, 083015 (2012).
Shi, Y. et al. Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 5, eaat8799 (2019).
Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. 116, 14511â14515 (2019).
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63â68 (2023).
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69â73 (2023).
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74â79 (2023).
Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).
Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759â764 (2024).
Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47â52 (2020).
Chu, Z. et al. Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging. Proc. Natl Acad. Sci. 117, 13908â13913 (2020).
Cui, Y.-T., Ma, E. Y. & Shen, Z.-X. Quartz tuning fork based microwave impedance microscopy. Rev. Sci. Instrum. 87, 063711 (2016).
Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715â719 (2021).
Ji, Z. et al. Harnessing excitons at the nanoscaleâphotoelectrical platform for quantitative sensing and imaging. Preprint at https://arxiv.org/abs/2311.04211 (2023).
Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite Fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).
Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite Fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359â363 (2020).
Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353â358 (2020).
Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650â654 (2021).
Wang, T. et al. Probing the edge states of Chern insulators using microwave impedance microscopy. Phys. Rev. B 108, 235432 (2023).
Lee, D.-H., Wang, Z. & Kivelson, S. Quantum percolation and plateau transitions in the quantum Hall effect. Phys. Rev. Lett. 70, 4130 (1993).
Wen, X.-G. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys. B 6, 1711â1762 (1992).
Zülicke, U., MacDonald, A. & Johnson, M. Observability of counterpropagating modes at fractional quantum Hall edges. Phys. Rev. B 58, 13778 (1998).
Sabo, R. et al. Edge reconstruction in fractional quantum Hall states. Nat. Phys. 13, 491â496 (2017).
Kane, C., Fisher, M. P. & Polchinski, J. Randomness at the edge: theory of quantum Hall transport at filling ν=2/3. Phys. Rev. Lett. 72, 4129 (1994).
Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2 with a superconducting sensor. Preprint at https://arxiv.org/abs/2405.10269 (2024).
Dutta, B. et al. Distinguishing between non-abelian topological orders in a quantum Hall system. Science 375, 193â197 (2022).
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931â936 (2020).
Meir, Y. Composite edge states in the ν=2/3 fractional quantum Hall regime. Phys. Rev. Lett. 72, 2624 (1994).
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Fabry-Pérot interferometry at the ν = 2/5 fractional quantum Hall state. Phys. Rev. X 13, 041012 (2023).
Santos, L. H., Cano, J., Mulligan, M. & Hughes, T. L. Symmetry-protected topological interfaces and entanglement sequences. Phys. Rev. B 98, 075131 (2018).
Crépel, V., Claussen, N., Estienne, B. & Regnault, N. Model states for a class of chiral topological order interfaces. Nat. Commun. 10, 1861 (2019).
Crépel, V., Claussen, N., Regnault, N. & Estienne, B. Microscopic study of the HalperinâLaughlin interface through matrix product states. Nat. Commun. 10, 1860 (2019).
Ji, Z. et al. Original data for âLocal probe of bulk and edge states in a fractional Chern insulatorâ. Dryad https://doi.org/10.5061/dryad.9p8cz8ws0 (2024).