Sunday, November 24, 2024
No menu items!
HomeNatureBroadly inhibitory antibodies to severe malaria virulence proteins

Broadly inhibitory antibodies to severe malaria virulence proteins

  • Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673–679 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lennartz, F., Lavstsen, T. & Higgins, M. K. Towards an anti-disease malaria vaccine. Emerg. Top. Life Sci. 1, 539–545 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. World malaria report 2023 (WHO, 2023).

  • Baruch, D. I. et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 77–87 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, J. D. et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101–110 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petersen, J. E. et al. Protein C system defects inflicted by the malaria parasite protein PfEMP1 can be overcome by a soluble EPCR variant. Thromb. Haemost. 114, 1038–1048 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillrie, M. R. et al. Diverse functional outcomes of Plasmodium falciparum ligation of EPCR: potential implications for malarial pathogenesis. Cell Microbiol. 17, 1883–1899 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosnier, L. O. & Lavstsen, T. The role of EPCR in the pathogenesis of severe malaria. Thromb. Res. 141, S46–S49 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obeng-Adjei, N. et al. Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection. JCI Insight https://doi.org/10.1172/jci.insight.137262 (2020).

  • Rambhatla, J. S. et al. Acquisition of antibodies against endothelial protein C receptor-binding domains of Plasmodium falciparum erythrocyte membrane protein 1 in children with severe malaria. J. Infect. Dis. 219, 808–818 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turner, L. et al. IgG antibodies to endothelial protein C receptor-binding cysteine-rich interdomain region domains of Plasmodium falciparum erythrocyte membrane protein 1 are acquired early in life in individuals exposed to malaria. Infect. Immun. 83, 3096–3103 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tewey, M. A. et al. Natural immunity to malaria preferentially targets the endothelial protein C receptor-binding regions of PfEMP1s. mSphere 8, e0045123 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rask, T. S., Hansen, D. A., Theander, T. G., Gorm, P. A. & Lavstsen, T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes-divide and conquer. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000933 (2010).

  • Rajan Raghavan, S. S. et al. Endothelial protein C receptor binding induces conformational changes to severe malaria-associated group A PfEMP1. Structure https://doi.org/10.1016/j.str.2023.07.011 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lau, C. K. et al. Structural conservation despite huge sequence diversity allows EPCR binding by the PfEMP1 family implicated in severe childhood malaria. Cell Host Microbe 17, 118–129 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernabeu, M. et al. Binding heterogeneity of Plasmodium falciparum to engineered 3D brain microvessels is mediated by EPCR and ICAM-1. mBio https://doi.org/10.1128/mBio.00420-19 (2019).

  • Hudetz, A. G. Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation 4, 233–252 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moka, S. et al. Blood flow velocity comparison in the eye capillaries and postcapillary venules between normal pregnant and non-pregnant women. Microvasc. Res. 127, 103926 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Koutsiaris, A. G. et al. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 44, 375–386 (2007).

    PubMed 

    Google Scholar
     

  • Chen, X. et al. Assessment of single-vessel cerebral blood velocity by phase contrast fMRI. PLoS Biol. 19, e3000923 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leech, J. H., Barnwell, J. W., Miller, L. H. & Howard, R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J. Exp. Med. 159, 1567–1575 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marsh, K. & Howard, R. J. Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science 231, 150–153 (1986).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Udeinya, I. J., Miller, L. H., McGregor, I. A. & Jensen, J. B. Plasmodium falciparum strain-specific antibody blocks binding of infected erythrocytes to amelanotic melanoma cells. Nature 303, 429–431 (1983).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, R. J. et al. Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes. Mol. Biochem. Parasitol. 27, 207–223 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doolan, D. L., Dobano, C. & Baird, J. K. Acquired immunity to malaria. Clin. Microbiol. Rev. 22, 13–36 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen, M. A. et al. Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J. Immunol. 168, 3444–3450 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bull, P. C. et al. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat. Med. 4, 358–360 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh, K., Otoo, L., Hayes, R. J., Carson, D. C. & Greenwood, B. M. Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans. R. Soc. Trop. Med. Hyg. 83, 293–303 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bull, P. C., Lowe, B. S., Kortok, M. & Marsh, K. Antibody recognition of Plasmodium falciparum erythrocyte surface antigens in Kenya: evidence for rare and prevalent variants. Infect. Immun. 67, 733–739 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otto, T. D. et al. Evolutionary analysis of the most polymorphic gene family in falciparum malaria. Wellcome Open Res. 4, 193 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brazier, A. J., Avril, M., Bernabeu, M., Benjamin, M. & Smith, J. D. Pathogenicity determinants of the human malaria parasite Plasmodium falciparum have ancient origins. mSphere https://doi.org/10.1128/mSphere.00348-16 (2017).

  • Aleshnick, M., Florez-Cuadros, M., Martinson, T. & Wilder, B. K. Monoclonal antibodies for malaria prevention. Mol. Ther. 30, 1810–1821 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cottrell, C. A. et al. Heterologous prime-boost vaccination drives early maturation of HIV broadly neutralizing antibody precursors in humanized mice. Sci. Transl. Med. 16, eadn0223 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steichen, J. M. et al. Vaccine priming of rare HIV broadly neutralizing antibody precursors in nonhuman primates. Science 384, eadj8321 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Z. et al. mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science 384, eadk0582 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiffner, T. et al. Vaccination induces broadly neutralizing antibody precursors to HIV gp41. Nat. Immunol. 25, 1073–1082 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro, K. M., Scheck, A., Xiao, S. & Correia, B. E. Computational design of vaccine immunogens. Curr. Opin. Biotechnol. 78, 102821 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kilama, M. et al. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar. J. 13, 111 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamya, M. R. et al. Malaria transmission, infection, and disease at three sites with varied transmission intensity in Uganda: implications for malaria control. Am. J. Trop. Med. Hyg. 92, 903–912 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mmbando, B. P. et al. A progressive declining in the burden of malaria in north-eastern Tanzania. Malar. J. 9, 216 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bushell, K. M., Sollner, C., Schuster-Boeckler, B., Bateman, A. & Wright, G. J. Large-scale screening for novel low-affinity extracellular protein interactions. Genome Res. 18, 622–630 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzales, S. J. et al. A molecular analysis of memory B cell and antibody responses against Plasmodium falciparum merozoite surface protein 1 in children and adults from Uganda. Front. Immunol. 13, 809264 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zajac, P., Islam, S., Hochgerner, H., Lonnerberg, P. & Linnarsson, S. Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases. PLoS ONE 8, e85270 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapteyn, J., He, R., McDowell, E. T. & Gang, D. R. Incorporation of non-natural nucleotides into template-switching oligonucleotides reduces background and improves cDNA synthesis from very small RNA samples. BMC Genomics 11, 413 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, H. X. et al. High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods 158, 171–179 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alamyar, E., Duroux, P., Lefranc, M. P. & Giudicelli, V. IMGT® tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol. Biol. 882, 569–604 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azasi, Y. et al. Infected erythrocytes expressing DC13 PfEMP1 differ from recombinant proteins in EPCR-binding function. Proc. Natl Acad. Sci. USA 115, 1063–1068 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzales, S. J. et al. Naturally acquired humoral immunity against Plasmodium falciparum malaria. Front. Immunol. 11, 594653 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kisalu, N. K. et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat. Med. 24, 408–416 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, L. et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502–505 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cham, G. K. et al. A semi-automated multiplex high-throughput assay for measuring IgG antibodies against Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) domains in small volumes of plasma. Malar. J. 7, 108 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skipper Seabold, J. P. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (SCIPY 2010) (eds van der Walt, S. & Millman, J.) 92–96 (scipy, Austin, TX, 2010).

  • Lennartz, F. et al. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria. Cell Host Microbe 21, 403–414 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bachmann, A. & Lavstsen, T. Analysis of var gene transcript patterns by quantitative real-time PCR. Methods Mol. Biol. 2470, 149–171 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342–9347 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piatti, L., Howard, C. C., Zheng, Y. & Bernabeu, M. Binding of Plasmodium falciparum-infected red blood cells to engineered 3D microvessels. Methods Mol. Biol. 2470, 557–585 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ 1, 213–220 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abanades, B. et al. ImmuneBuilder: deep-learning models for predicting the structures of immune proteins. Commun. Biol. 6, 575 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R. Y. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Quintero, M. L. et al. Germline-dependent antibody paratope states and pairing specific VH–VL interface dynamics. Front. Immunol. 12, 675655 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chodera, J. D. & Noe, F. Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 25, 135–144 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments