Purcell, B. A. & Kiani, R. Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy. Proc. Natl Acad. Sci. USA 113, E4531âE4540 (2016).
Donoso, M., Collins, A. G. E. & Koechlin, E. Foundations of human reasoning in the prefrontal cortex. Science 344, 1481â1486 (2014).
Rigotti, M. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585â590 (2013).
Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389â397 (2008).
Tervo, D. G. R. et al. The anterior cingulate cortex directs exploration of alternative strategies. Neuron 109, 1876â1887.e6 (2021).
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S. & Cohen, J. D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179â181 (1999).
Wallis, J. D., Anderson, K. C. & Miller, E. K. Single neurons in prefrontal cortex encode abstract roles. Nature 411, 953â956 (2001).
Ma, W. J. & Jazayeri, M. Neural coding of uncertainty and probability. Annu. Rev. Neurosci. 37, 205â220 (2014).
Koblinger, Ã., Fiser, J. & Lengyel, M. Representations of uncertainty: where art thou? Curr. Opin. Behav. Sci. 38, 150â162 (2021).
Sarafyadz, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 364, eaav8911 (2019).
Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429â433 (2002).
Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244â247 (2004).
Yoshida, W. & Ishii, S. Resolution of uncertainty in prefrontal cortex. Neuron 50, 781â789 (2006).
Zylberberg, A., Wolpert, D. M. & Shadlen, M. N. Counterfactual reasoning underlies the learning of priors in decision making. Neuron 99, 1083â1097.e6 (2018).
Rushworth, M. F. S., Noonan, M. A. P., Boorman, E. D., Walton, M. E. & Behrens, T. E. Frontal cortex and reward-guided learning and decision-making. Neuron 70, 1054â1069 (2011).
Hanganu-Opatz, I. L. et al. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: a cross-species perspective. Neuron 111, 1020â1036 (2023).
Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci. 20, 1669â1679 (2017).
DeNicola, A. L., Park, M. Y., Crowe, D. A., MacDonald, A. W. & Chafee, M. V. Differential roles of mediodorsal nucleus of the thalamus and prefrontal cortex in decision-making and state representation in a cognitive control task measuring deficits in schizophrenia. J. Neurosci. 40, 1650â1667 (2020).
Bolkan, S. S. et al. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat. Neurosci. 20, 987â996 (2017).
Shine, J. M., Lewis, L. D., Garrett, D. D. & Hwang, K. The impact of the human thalamus on brain-wide information processing. Nat. Rev. Neurosci. 24, 416â430 (2023).
Schmitt, L. I. et al. Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219â223 (2017).
Mukherjee, A., Lam, N. H., Wimmer, R. D. & Halassa, M. M. Thalamic circuits for independent control of prefrontal signal and noise. Nature 600, 100â104 (2021).
Grinband, J., Hirsch, J. & Ferrera, V. P. A neural representation of categorization uncertainty in the human brain. Neuron 49, 757â763 (2006).
Parnaudeau, S. et al. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77, 1151â1162 (2013).
Chakraborty, S., Kolling, N., Walton, M. E. & Mitchell, A. S. Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments. eLife 5, e13588 (2016).
Alcaraz, F. et al. Thalamocortical and corticothalamic pathways differentially contribute to goal-directed behaviors in the rat. eLife 7, e32517 (2018).
Li, C., McHaney, K. M., Sederberg, P. B. & Cang, J. Tree shrews as an animal model for studying perceptual decision-making reveal a critical role of stimulus-independent processes in guiding behavior. eNeuro 9, ENEURO.0419-22.2022 (2022).
Schumacher, J. W., McCann, M. K., Maximov, K. J. & Fitzpatrick, D. Selective enhancement of neural coding in V1 underlies fine-discrimination learning in tree shrew. Curr. Biol. 32, 3245â3260.e5 (2022).
Hoover, W. B. & Vertes, R. P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149â179 (2007).
Vertes, R. P., Palomero-Gallagher, N. & Halassa, M. M. in The Frontal Cortex: Organization, Networks, and Function Vol. 35 (eds Banich, M. T. et al.) Ch. 3 (MIT Press, 2024).
GoldmanâRakic, P. S. & Porrino, L. J. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J. Comp. Neurol. 242, 535â560 (1985).
Wong, P. & Kaas, J. H. Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri). Anat. Rec. 292, 994 (2009).
Zilles, K. & Palomero-Gallagher, N. Comparative analysis of receptor types that identify primary cortical sensory areas. Evol. Nerv. Syst. 2â4, 225â245 (2017).
Goldring, A. B. & Krubitzer, L. A. in Evolutionary Neuroscience (ed. Kaas, J. H.) 627â656 (Academic Press, 2020).
Lee, K. S., Huang, X. & Fitzpatrick, D. Topology of on and off inputs in visual cortex enables an invariant columnar architecture. Nature 533, 90â94 (2016).
Casaorande, V. A., Harting, J. K., Hall, W. C., Diamond, I. T. & Martin, G. F. Superior colliculus of the tree shrew: a structural and functional subdivision into superficial and deep layers. Science 177, 444â447 (1972).
Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78â84 (2013).
Akam, T. et al. The anterior cingulate cortex predicts future states to mediate model-based action selection. Neuron 109, 149â163.e7 (2021).
Hayden, B. Y., Heilbronner, S. R., Pearson, J. M. & Platt, M. L. Surprise signals in anterior cingulate cortex: neuronal encoding of unsigned reward prediction errors driving adjustment in behavior. J. Neurosci. 31, 4178â4187 (2011).
Vertechi, P. et al. Inference-based decisions in a hidden state foraging task: differential contributions of prefrontal cortical areas. Neuron 106, 166â176.e6 (2020).
Phillips, J. M. et al. Topographic organization of connections between prefrontal cortex and mediodorsal thalamus: evidence for a general principle of indirect thalamic pathways between directly connected cortical areas. Neuroimage 189, 832 (2019).
Mukherjee, A. et al. Variation of connectivity across exemplar sensory and associative thalamocortical loops in the mouse. eLife 9, e62554 (2020).
Srinath, R., Ruff, D. A. & Cohen, M. R. Attention improves information flow between neuronal populations without changing the communication subspace. Curr. Biol. 31, 5299â5313.e4 (2021).
Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical areas interact through a communication subspace. Neuron 102, 249â259.e4 (2019).
Wilson, R. C. & Collins, A. G. E. Ten simple rules for the computational modeling of behavioral data. eLife 8, e49547 (2019).
Aoi, M. C., Mante, V. & Pillow, J. W. Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making. Nat. Neurosci. 23, 1410â1420 (2020).
Rikhye, R. V., Gilra, A. & Halassa, M. M. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat. Neurosci. 21, 1753â1763 (2018).
Kobak, D. et al. Demixed principal component analysis of neural population data. eLife 5, e10989 (2016).
Kosciessa, J. Q., Lindenberger, U. & Garrett, D. D. Thalamocortical excitability modulation guides human perception under uncertainty. Nat. Commun. 12, 2430 (2021).
Li, Y. S., Nassar, M. R., Kable, J. W. & Gold, J. I. Individual neurons in the cingulate cortex encode action monitoring, not selection, during adaptive decision-making. J. Neurosci. 39, 6668â6683 (2019).
Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T. & Miyamoto, A. Responses of pulvinar neurons reflect a subjectâs confidence in visual categorization. Nat. Neurosci. 16, 749â755 (2013).
Hwang, K., Shine, J. M., Cole, M. W. & Sorenson, E. Thalamocortical contributions to cognitive task activity. eLife 11, e81282 (2022).
Halassa, M. M. & Sherman, S. M. Thalamocortical circuit motifs: a general framework. Neuron 103, 762â770 (2019).
Zheng, W.-L., Wu, Z., Hummos, A., Yang, G. R. & Halassa, M. M. Rapid context inference in a thalamocortical model using recurrent neural networks. Nat. Commun. 15, 8275 (2024).
Wolff, M. & Halassa, M. M. The mediodorsal thalamus in executive control. Neuron 112, 893â908 (2024).
Scott, D. N., Mukherjee, A., Nassar, M. R. & Halassa, M. M. Thalamocortical architectures for flexible cognition and efficient learning. Trends Cogn. Sci. 28, 739â756 (2024).
Kreis, I., Zhang, L., Moritz, S. & Pfuhl, G. Spared performance but increased uncertainty in schizophrenia: Evidence from a probabilistic decision-making task. Schizophr. Res. 243, 4414â423 (2022).
Cole, D. M. et al. Atypical processing of uncertainty in individuals at risk for psychosis. Neuroimage Clin. 26, 102239 (2020).
Nassar, M., Waltz, J., Albrecht, M., Gold, J. & Frank, M. All or nothing belief updating in patients with schizophrenia reduces precision and flexibility of beliefs. Brain 144, 1013â1029 (2021).
Cascella, N. et al. Deep brain stimulation of the substantia nigra pars reticulata for treatment-resistant schizophrenia: a case report. Biol. Psychiatry 90, e57âe59 (2021).
Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705â709 (2015).
Brunetti, M. et al. Design and fabrication of ultralight weight, adjustable multi-electrode probes for electrophysiological recordings in mice. J.Vis. Exp. https://doi.org/10.3791/51675-v (2014).
Zhou, J.-N. & Ni, R.-J. The Tree Shrew (Tupaia belangeri chinensis) Brain in Stereotaxic Coordinates 1st edn (Springer, 2016).
Franklin, K. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates 3rd edn (Elsevier, 2008).
Daw, N. D., OâDoherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876 (2006).
Bolkan, S. S. et al. Opponent control of behavior by dorsomedial striatal pathways depends on task demands and internal state. Nat. Neurosci. 25, 345â357 (2022).
Lundqvist, M. et al. Gamma and beta bursts underlie working memory. Neuron 90, 152â164 (2016).
Meyers, E. M. The neural decoding toolbox. Front. Neuroinform. 7, 8 (2013).
Pillow, J. W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995â999 (2008).