Stewart-Morgan, K. R., Petryk, N. & Groth, A. Chromatin replication and epigenetic cell memory. Nat. Cell Biol. 22, 361â371 (2020).
Flury, V. et al. Recycling of modified H2A-H2B provides short-term memory of chromatin states. Cell 186, 1050â1065.e19 (2023).
Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873â878 (2004).
Reinberg, D. & Vales, L. D. Chromatin domains rich in inheritance. Science 361, 33â34 (2018).
Zhao, J. et al. RYBP/YAF2âPRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119Ub1 during cell division. Nat. Cell Biol. 22, 439â452 (2020).
Wenger, A. et al. Symmetric inheritance of parental histones governs epigenome maintenance and embryonic stem cell identity. Nat. Genet. 55, 1567â1578 (2023).
Cheedipudi, S., Genolet, O. & Dobreva, G. Epigenetic inheritance of cell fates during embryonic development. Front. Genet. 5, 19 (2014).
Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445â1459 (2014).
Taherbhoy, A. M., Huang, O. W. & Cochran, A. G. BMI1âRING1B is an autoinhibited RING E3 ubiquitin ligase. Nat. Commun. 6, 7621 (2015).
Schoorlemmer, J. et al. Ring1A is a transcriptional repressor that interacts with the Polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain. EMBO J. 16, 5930â5942 (1997).
Buchwald, G. et al. Structure and E3-ligase activity of the RingâRing complex of Polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465â2474 (2006).
Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344â356 (2012).
de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663â676 (2004).
Simon, J. A. & Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 10, 697â708 (2009).
Fursova, N. A. et al. Synergy between variant PRC1 complexes defines Polycomb-mediated gene repression. Mol. Cell 74, 1020â1036.e8 (2019).
Rose, N. R. et al. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes. eLife 5, e18591 (2016).
Tavares, L. et al. RYBPâPRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664â678 (2012).
Morey, L., Aloia, L., Cozzuto, L., Benitah, S. A. & Di Croce, L. RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. Cell Rep. 3, 60â69 (2013).
Garcia, E., Marcos-Gutierrez, C., del Mar Lorente, M., Moreno, J. C. & Vidal, M. RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. EMBO J. 18, 3404â3418 (1999).
Eid, A. & Torres-Padilla, M. E. Characterization of non-canonical Polycomb repressive complex 1 subunits during early mouse embryogenesis. Epigenetics 11, 389â397 (2016).
Wang, R. et al. Polycomb group targeting through different binding partners of RING1B C-terminal domain. Structure 18, 966â975 (2010).
Arrigoni, R. et al. The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett. 580, 6233â6241 (2006).
Wang, B. et al. Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4. J. Biol. Chem. 278, 20225â20234 (2003).
Alam, S. L. et al. Ubiquitin interactions of NZF zinc fingers. EMBO J. 23, 1411â1421 (2004).
Hansen, K. H. et al. Erratum: A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1484â1484 (2008).
Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343â349 (2011).
Iglesias, N. et al. Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability. Nature 560, 504â508 (2018).
Poepsel, S., Kasinath, V. & Nogales, E. Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat. Struct. Mol. Biol. 25, 154â162 (2018).
Cutter DiPiazza, A. R. et al. Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. Proc. Natl Acad. Sci. USA 118, e2100699118 (2021).
Yu, J. R. et al. The H3K36me2 writerâreader dependency in H3K27M-DIPG. Sci. Adv. 7, eabg7444 (2021).
Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325â328 (1998).
Ragunathan, K., Jih, G. & Moazed, D. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699 (2015).
Blackledge, N. P. & Klose, R. J. The molecular principles of gene regulation by Polycomb repressive complexes. Nat. Rev. Mol. Cell Biol. 22, 815â833 (2021).
Ciapponi, M., Karlukova, E., Schkolziger, S., Benda, C. & Muller, J. Structural basis of the histone ubiquitination readâwrite mechanism of RYBPâPRC1. Nat. Struct. Mol. Biol. 31, 1023â1027 (2024).
McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591â596 (2014).
Ai, H. S. et al. Synthetic E2âUbânucleosome conjugates for studying nucleosome ubiquitination. Chem 9, 1221â1240 (2023).
Li, Z. et al. Structure of a Bmi-1âRing1B Polycomb group ubiquitin ligase complex. J. Biol. Chem. 281, 20643â20649 (2006).
Hauri, S. et al. A high-density map for navigating the human Polycomb complexome. Cell Rep. 17, 583â595 (2016).
Kaufman, P. D. & Rando, O. J. Chromatin as a potential carrier of heritable information. Curr. Opin. Cell Biol. 22, 284â290 (2010).
Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845â854 (2005).
Bentley, M. L. et al. Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. EMBO J. 30, 3285â3297 (2011).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583â589 (2021).
Kulathu, Y., Akutsu, M., Bremm, A., Hofmann, K. & Komander, D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat. Struct. Mol. Biol. 16, 1328â1330 (2009).
Escobar, T. M., Loyola, A. & Reinberg, D. Parental nucleosome segregation and the inheritance of cellular identity. Nat. Rev. Genet. 22, 379â392 (2021).
Flury, V. & Groth, A. Safeguarding the epigenome through the cell cycle: a multitasking game. Curr. Opin. Genet. Dev. 85, 102161 (2024).
Tamburri, S. et al. Histone H2AK119 mono-ubiquitination is essential for Polycomb-mediated transcriptional repression. Mol. Cell 77, 840â856.e5 (2020).
Witus, S. R. et al. BRCA1/BARD1 intrinsically disordered regions facilitate chromatin recruitment and ubiquitylation. EMBO J. 42, e113565 (2023).
Valencia-Sanchez, M. I. et al. Structural basis of Dot1L stimulation by histone H2B lysine 120 ubiquitination. Mol. Cell 74, 1010â1019.e6 (2019).
Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23â44 (2004).
Zhou, B. R. et al. Distinct structures and dynamics of chromatosomes with different human linker histone isoforms. Mol. Cell 81, 166â182.e6 (2021).
Long, L., Furgason, M. & Yao, T. Generation of nonhydrolyzable ubiquitin-histone mimics. Methods 70, 134â138 (2014).
Thomas, J. F. et al. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1. Sci. Adv. 9, eadg9832 (2023).
Ge, W. et al. Basis of the H2AK119 specificity of the Polycomb repressive deubiquitinase. Nature 616, 176â182 (2023).
Armache, K. J., Garlick, J. D., Canzio, D., Narlikar, G. J. & Kingston, R. E. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution. Science 334, 977â982 (2011).
Dao, H. T., Liu, H., Mashtalir, N., Kadoch, C. & Muir, T. W. Synthesis of oriented hexasomes and asymmetric nucleosomes using a template editing process. J. Am. Chem. Soc. 144, 2284â2291 (2022).
Machida, S. et al. Structural basis of heterochromatin formation by human HP1. Mol. Cell 69, 385â397.e8 (2018).
Lee, C. H. et al. Distinct stimulatory mechanisms regulate the catalytic activity of Polycomb repressive complex 2. Mol. Cell 70, 435â448.e5 (2018).
Hall, M. D. et al. Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods. Appl. Fluoresc. 4, 022001 (2016).
Stark, H. GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol. 481, 109â126 (2010).
Grau, D. et al. Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction. Nat. Commun. 12, 714 (2021).
Valencia-Sanchez, M. I. et al. The structure of a virus-encoded nucleosome. Nat. Struct. Mol. Biol. 28, 413â417 (2021).
Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584â590 (2013).
Cheng, A. et al. Leginon: new features and applications. Protein Sci. 30, 136â150 (2021).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331â332 (2017).
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290â296 (2017).
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721â745 (2003).
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213â221 (2010).
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605â1612 (2004).
Vijay-Kumar, S., Bugg, C. E. & Cook, W. J. Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 194, 531â544 (1987).
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126â2132 (2004).
Dombrowski, M., Engeholm, M., Dienemann, C., Dodonova, S. & Cramer, P. Histone H1 binding to nucleosome arrays depends on linker DNA length and trajectory. Nat. Struct. Mol. Biol. 29, 493â501 (2022).
DeLano, W. The PyMOL Molecular Graphics System, version 1.3r1 (Schrödinger, 2020).
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).