Patriat, P. & Achache, J. IndiaâEurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615â621 (1984).
Cande, S. C. & Patriat, P. The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic. Geophys. J. Int. 200, 227â243 (2015).
Copley, A., Avouac, J. P. & Royer, J. Y. IndiaâAsia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J. Geophys. Res. Solid Earth 115, B03410 (2010).
Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475, 47â52 (2011).
Jagoutz, O., Royden, L., Holt, A. F. & Becker, T. W. Anomalously fast convergence of India and Eurasia caused by double subduction. Nat. Geosci. 8, 475â478 (2015).
Van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V. & Gassmöller, R. Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. Solid Earth 116, B06101 (2011).
Pusok, A. E. & Stegman, D. R. The convergence history of India-Eurasia records multiple subduction dynamics processes. Sci. Adv. 6, eaaz8681 (2020).
Wan, B. et al. Cyclical one-way continental rupture-drift in the Tethyan evolution: subduction-driven plate tectonics. Sci. China-Earth Sci. 62, 2005â2016 (2019).
Forsyth, D. & Uyeda, S. On the relative importance of the driving forces of plate motion. Geophys. J. Int. 43, 163â200 (1975).
Holt, A. F., Royden, L. H. & Becker, T. W. The dynamics of double slab subduction. Geophys. J. Int. 209, 250â265 (2017).
Pusok, A. E. & Stegman, D. R. Formation and stability of same-dip double subduction systems. J. Geophys. Res. Solid Earth 124, 7387â7412 (2019).
Cande, S. C., Patriat, P. & Dyment, J. Motion between the Indian, Antarctic and African plates in the early Cenozoic: Indian Ocean Plate motions. Geophys. J. Int. 183, 127â149 (2010).
Ingalls, M., Rowley, D. B., Currie, B. & Colman, A. S. Large-scale subduction of continental crust implied by IndiaâAsia mass-balance calculation. Nat. Geosci. 9, 848â853 (2016).
Van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659â7664 (2012).
DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33, 824â849 (2014).
Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. Nat. Sci. Rev. 8, nwaa173 (2020).
Behr, W. M. & Becker, T. W. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett. 502, 166â173 (2018).
Hu, J., Liu, L. & Gurnis, M. Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth. Nat. Commun. 12, 7271 (2021).
Sobolev, S. V. & Brown, M. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature 570, 52â57 (2019).
Sobolev, S. V. & Babeyko, A. Y. What drives orogeny in the Andes? Geology 33, 617â620 (2005).
Tobin, H. J. & Saffer, D. M. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 37, 679â682 (2009).
Kopf, A. & Brown, K. M. Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts. Mar. Geol. 202, 193â210 (2003).
Bangs, N. L. B. et al. Broad, weak regions of the Nankai Megathrust and implications for shallow coseismic slip. Earth Planet. Sci. Lett. 284, 44â49 (2009).
Brizzi, S. et al. The role of sediment accretion and buoyancy on subduction dynamics and geometry. Geophys. Res. Lett. 48, e2021GL096266 (2021).
Zhu, D. C. et al. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent meltâperidotite interaction? J. Asian Earth Sci. 34, 298â309 (2009).
Mo, X. X. et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96, 225â242 (2007).
Zhu, D. C., Wang, Q., Chung, S. L., Cawood, P. A. & Zhao, Z. D. Gangdese magmatism in southern Tibet and IndiaâAsia convergence since 120âMa. Geol. Soc. Spec. Publ. 483, 583â604 (2019).
Pearce, J. A. & Peate, D. W. Tectonic implications of the composition of volcanic ARC magmas. Annu. Rev. Earth Planet. Sci. 23, 251â285 (1995).
Schmidt, M. W. & Jagoutz, O. The global systematics of primitive arc melts. Geochem. Geophys. Geosyst. 18, 2817â2854 (2017).
Müntener, O. & Ulmer, P. Arc crust formation and differentiation constrained by experimental petrology. Am. J. Sci. 318, 64â89 (2018).
Chen, L., Zheng, Y. F., Zhao, Z. F., An, W. & Hu, X. M. Continental crust recycling in ancient oceanic subduction zone: geochemical insights from arc basaltic to andesitic rocks and paleo-trench sediments in southern Tibet. Lithos 414â415, 106619 (2022).
Zhao, L., Guo, F., Fan, W. M. & Huang, M. Roles of subducted pelagic and terrigenous sediments in Early Jurassic mafic magmatism in NE China: constraints on the architecture of paleo-Pacific subduction zone. J. Geophys. Res. Solid Earth 124, 2525â2550 (2019).
Guo, F. et al. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: an overview. Earth Sci. Rev. 212, 103448 (2021).
Patchett, P. J., White, W. M., Feldmann, H., Kielinczuk, S. & Hofmann, A. W. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earthâs mantle. Earth Planet. Sci. Lett. 69, 365â378 (1984).
Hou, Z. et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Econ. Geol. 110, 1541â1575 (2015).
Wen, D. R. et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos 105, 1â11 (2008).
Huang, T. Y. et al. Subduction erosion revealed by Late Mesozoic magmatism in the Gangdese arc, South Tibet. Geophys. Res. Lett. 49, e2021GL097360 (2022).
Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652â667 (2022).
van Dinther, Y. et al. The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical models. J. Geophys. Res. Solid Earth 118, 6183â6202 (2013).
Dal Zilio, L., Kissling, E., Gerya, T. & van Dinther, Y. Slab rollback orogeny model: a test of concept. Geophys. Res. Lett. 47, e2020GL089917 (2020).
Gerya, T. V. & Yuen, D. A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83â105 (2007).
Gerya, T. & Stöckhert, B. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int. J. Earth Sci. (Geol Rundsch) 95, 250â274 (2006).
Heezen, B. C., Ericson, D. B. & Ewing, M. Further evidence for a turbidity current following the 1929 Grand Banks earthquake. Deep Sea Res. (1953) 1, 193â202 (1954).
Straume, E. O. et al. GlobSed: updated total sediment thickness in the worldâs oceans. Geochem. Geophys. Geosyst. 20, 1756â1772 (2019).
Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chen. Geol. 145, 325â394 (1998).
Pusok, A. E., Stegman, D. R. & Kerr, M. The effect of low-viscosity sediments on the dynamics and accretionary style of subduction margins. Solid Earth 13, 1455â1473 (2022).
Sibson, R. H. Stress switching in subduction forearcs: implications for overpressure containment and strength cycling on megathrusts. Tectonophysics 600, 142â152 (2013).
Faulkner, D. R. et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 32, 1557â1575 (2010).
Tang, M., Ji, W. Q., Chu, X., Wu, A. & Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76â80 (2020).
Hu, F. et al. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from wholeârock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202 (2020).
Guo, P. & Yang, T. Quantifying continental crust thickness using the machine learning method. J. Geophys. Res. Solid Earth 128, e2022JB025970 (2023).
Zhao, Z. D. et al. Distribution and its significance of dikes in southern Tibetan Plateau. Acta Petrol. Sin. 37, 3399â3412 (2021).
van Hinsbergen, D. J. J. et al. Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics 30, TC5003 (2011).
Hu, X. M., Garzanti, E., Moore, T. & Raffi, I. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59â±â1âMa). Geology 43, 859â862 (2015).
Orme, D. A., Carrapa, B. & Kapp, P. Sedimentology, provenance and geochronology of the upper Cretaceousâlower Eocene western Xigaze forearc basin, southern Tibet. Basin Res. 27, 387â411 (2015).
An, W., Hu, X. M., Garzanti, E., Wang, J. G. & Liu, Q. New precise dating of the IndiaâAsia collision in the Tibetan Himalaya at 61âMa. Geophys. Res. Lett. 48, e2020GL090641 (2021).
Zhu, D. C. et al. Interplay between oceanic subduction and continental collision in building continental crust. Nat. Commun. 13, 7141 (2022).
Kapp, P. & DeCelles, P. G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159â254 (2019).
Ma, L. et al. Early Late Cretaceous (ca. 93âMa) norites and hornblendites in the Milin area, eastern Gangdese: lithosphereâasthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100â80âMa) magmatic âflare-upâ in southern Lhasa (Tibet). Lithos 172â173, 17â30 (2013).
Ma, L. et al. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and SrâNdâHfâO isotopic evidence from Zhengga dioriteâgabbro. Chem. Geol. 349â350, 54â70 (2013).
Meng, Y. K. et al. Late Mesozoic diorites of the middle Gangdese magmatic belt of southern Tibet: new insights from SHRIMP U-Pb dating and Sr-Nd-Hf-O isotopes. Lithos 404â405, 106420 (2021).
Guan, Q. et al. Zircon U-Pb chronology, geochemistry of the Late Cretaceous mafic magmatism in the southern Lhasa Terrane and its implications. Acta Petrol. Sin. 27, 2083â2094 (2011).
Tang, Y. et al. Geochemistry and petrogenesis of Late Cretaceous Namling gabbro and dykes in Gangdese batholith, Tibet. Acta Petrol. Sin. 35, 387â404 (2019).
Qi, Y. et al. Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene (~64âMa) pseudoleucite phonolitic rocks in central Lhasa terrane. Lithos 302â303, 178â188 (2018).
Huang, F. et al. Fluid flux in the lithosphere beneath southern Tibet during Neo-Tethyan slab breakoff: evidence from an appiniteâgranite suite. Lithos 344â345, 324â338 (2019).
Wang, Y. F. et al. Along-arc variations in isotope and trace element compositions of Paleogene gabbroic rocks in the Gangdese batholith, southern Tibet. Lithos 324â325, 877â892 (2019).
Huang, F., Rooney, T. O., Xu, J. F. & Zeng, Y. C. Magmatic record of continuous Neo-Tethyan subduction after initial India-Asia collision in the central part of southern Tibet. GSA Bull. 133, 1600â1612 (2020).
Lei, M., Chen, J. L., Huang, F. & Liu, Y. X. Mantle wedge enrichment beneath southern Tibet during the late stage (100â45âMa) of oceanic subduction: geochemical constraints from mantle-derived intrusions. Lithos 406â407, 106505 (2021).
Yan, H. Y. et al. Arc andesitic rocks derived from partial melts of mélange diapir in subduction zones: evidence from whole-rock geochemistry and Sr-Nd-Mo isotopes of the Paleogene Linzizong volcanic succession in southern Tibet. J. Geophys. Res. Solid Earth 124, 456â475 (2019).
Mo, X. X. et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem. Geol. 250, 49â67 (2008).
Zhou, S. et al. 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications. Chin. Sci. Bull. 49, 1970â1979 (2004).
Dong, G. C. Linzizong Volcanic Rocks and Implications for Probing India Eurasia Collision Process in Linzhou Volcanic Basin, Tibet. PhD thesis, China Univ. Geosciences, Beijing (2002).
Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53â72 (2005).
Richards, A. et al. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett. 236, 773â796 (2005).
Aizawa, Y., Tatsumi, Y. & Yamada, H. Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism. Island Arc 8, 38â46 (1999).
Tatsumi, Y. & Hanyu, T. Geochemical modeling of dehydration and partial melting of subducting lithosphere: toward a comprehensive understanding of highâMg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem. Geophys. Geosyst. 4, 1081 (2003).
Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: an experimental study. J. Petrology 49, 717â740 (2008).
Wilson, M. Igneous Petrogenesis. (Springer, 1989).
Faure, G. & Mensing, T. M. Isotopes: Principles and Applications (Wiley, 2005).
Crameri, F. et al. A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the âsticky airâ method: modelling topography in geodynamics. Geophys. J. Int. 189, 38â54 (2012).
Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2014).
Ranalli, G. Rheology of the Earth (Springer-Verlag, 2011).
Cai, F. L. et al. Late Triassic paleogeographic reconstruction along the NeoâTethyan Ocean margins, southern Tibet. Earth Planet. Sci. Lett. 435, 105â114 (2016).
Hennig, J., Hall, R. & Armstrong, R. A. U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: extension-related metamorphism and magmatism during the early stages of mountain building. Gondwana Res. 32, 41â63 (2016).
Wang, J. G. et al. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): the terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Res. 34, 84â98 (2016).
Mitchell, N. C. Modeling Cenozoic sedimentation in the central equatorial Pacific and implications for true polar wander. J. Geophys. Res. Solid Earth 103, 17749â17766 (1998).
Savoye, B., Babonneau, N., Dennielou, B. & Bez, M. Geological overview of the AngolaâCongo margin, the Congo deep-sea fan and its submarine valleys. Deep Sea Res. PT II 56, 2169â2182 (2009).
Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, 2003RG000127 (2004).
Hu, X. M., An, W., Garzanti, E. & Liu, Q. Recognition of trench basins in collisional orogens: insights from the Yarlung Zangbo suture zone in southern Tibet. Sci. China Earth Sci. 63, 2017â2028 (2020).
Noda, A. Forearc basins: types, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879â895 (2016).
Straub, S. M., Gómez-Tuena, A. & Vannucchi, P. Subduction erosion and arc volcanism. Nat. Rev. Earth Environ. 1, 574â589 (2020).
Zhou, H. et al. Data from: India-Eurasia convergence speed-up by passive-margin sediment subduction. Dryad https://doi.org/10.5061/dryad.8kprr4xwr (2024).
Irvine, T. N. & Baragar, W. R. A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523â548 (1971).
Peccerillo, A. & Taylor, S. R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 58, 63â81 (1976).
Hasterok, D. et al. New maps of global geological provinces and tectonic plates. Earth Sci. Rev. 231, 104069 (2022).
Den Hartog, S. A. M., Niemeijer, A. R. & Spiers, C. J. New constraints on megathrust slip stability under subduction zone PâT conditions. Earth Planet. Sci. Lett. 353â354, 240â252 (2012).
Di Toro, G. et al. Fault lubrication during earthquakes. Nature 471, 494â498 (2011).
Tsutsumi, A. & Shimamoto, T. Highâvelocity frictional properties of gabbro. Geophy. Res. Lett. 24, 699â702 (1997).
Chester, F. M. & Higgs, N. G. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. J. Geophys. Res. Solid Earth 97, 1859â1870 (1992).
Del Gaudio, P. et al. Frictional melting of peridotite and seismic slip. J. Geophys. Res. Solid Earth 114, B06306 (2009).
Schultz, R. A. Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mech. Rock Eng. 28, 1â15 (1995).