Wednesday, November 6, 2024
No menu items!
HomeNatureIndia–Eurasia convergence speed-up by passive-margin sediment subduction

India–Eurasia convergence speed-up by passive-margin sediment subduction

  • Patriat, P. & Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–621 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Cande, S. C. & Patriat, P. The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic. Geophys. J. Int. 200, 227–243 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Copley, A., Avouac, J. P. & Royer, J. Y. India‐Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J. Geophys. Res. Solid Earth 115, B03410 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475, 47–52 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jagoutz, O., Royden, L., Holt, A. F. & Becker, T. W. Anomalously fast convergence of India and Eurasia caused by double subduction. Nat. Geosci. 8, 475–478 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V. & Gassmöller, R. Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. Solid Earth 116, B06101 (2011).

    ADS 

    Google Scholar
     

  • Pusok, A. E. & Stegman, D. R. The convergence history of India-Eurasia records multiple subduction dynamics processes. Sci. Adv. 6, eaaz8681 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, B. et al. Cyclical one-way continental rupture-drift in the Tethyan evolution: subduction-driven plate tectonics. Sci. China-Earth Sci. 62, 2005–2016 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Forsyth, D. & Uyeda, S. On the relative importance of the driving forces of plate motion. Geophys. J. Int. 43, 163–200 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Holt, A. F., Royden, L. H. & Becker, T. W. The dynamics of double slab subduction. Geophys. J. Int. 209, 250–265 (2017).

    ADS 

    Google Scholar
     

  • Pusok, A. E. & Stegman, D. R. Formation and stability of same-dip double subduction systems. J. Geophys. Res. Solid Earth 124, 7387–7412 (2019).

    Article 

    Google Scholar
     

  • Cande, S. C., Patriat, P. & Dyment, J. Motion between the Indian, Antarctic and African plates in the early Cenozoic: Indian Ocean Plate motions. Geophys. J. Int. 183, 127–149 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ingalls, M., Rowley, D. B., Currie, B. & Colman, A. S. Large-scale subduction of continental crust implied by India–Asia mass-balance calculation. Nat. Geosci. 9, 848–853 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33, 824–849 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. Nat. Sci. Rev. 8, nwaa173 (2020).

    Article 

    Google Scholar
     

  • Behr, W. M. & Becker, T. W. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett. 502, 166–173 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, J., Liu, L. & Gurnis, M. Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth. Nat. Commun. 12, 7271 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobolev, S. V. & Brown, M. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature 570, 52–57 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sobolev, S. V. & Babeyko, A. Y. What drives orogeny in the Andes? Geology 33, 617–620 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Tobin, H. J. & Saffer, D. M. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 37, 679–682 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Kopf, A. & Brown, K. M. Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts. Mar. Geol. 202, 193–210 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Bangs, N. L. B. et al. Broad, weak regions of the Nankai Megathrust and implications for shallow coseismic slip. Earth Planet. Sci. Lett. 284, 44–49 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brizzi, S. et al. The role of sediment accretion and buoyancy on subduction dynamics and geometry. Geophys. Res. Lett. 48, e2021GL096266 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, D. C. et al. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt–peridotite interaction? J. Asian Earth Sci. 34, 298–309 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Mo, X. X. et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96, 225–242 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, D. C., Wang, Q., Chung, S. L., Cawood, P. A. & Zhao, Z. D. Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geol. Soc. Spec. Publ. 483, 583–604 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Pearce, J. A. & Peate, D. W. Tectonic implications of the composition of volcanic ARC magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schmidt, M. W. & Jagoutz, O. The global systematics of primitive arc melts. Geochem. Geophys. Geosyst. 18, 2817–2854 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Müntener, O. & Ulmer, P. Arc crust formation and differentiation constrained by experimental petrology. Am. J. Sci. 318, 64–89 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chen, L., Zheng, Y. F., Zhao, Z. F., An, W. & Hu, X. M. Continental crust recycling in ancient oceanic subduction zone: geochemical insights from arc basaltic to andesitic rocks and paleo-trench sediments in southern Tibet. Lithos 414–415, 106619 (2022).

  • Zhao, L., Guo, F., Fan, W. M. & Huang, M. Roles of subducted pelagic and terrigenous sediments in Early Jurassic mafic magmatism in NE China: constraints on the architecture of paleo-Pacific subduction zone. J. Geophys. Res. Solid Earth 124, 2525–2550 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, F. et al. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: an overview. Earth Sci. Rev. 212, 103448 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Patchett, P. J., White, W. M., Feldmann, H., Kielinczuk, S. & Hofmann, A. W. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet. Sci. Lett. 69, 365–378 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, Z. et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Econ. Geol. 110, 1541–1575 (2015).

    Article 

    Google Scholar
     

  • Wen, D. R. et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos 105, 1–11 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, T. Y. et al. Subduction erosion revealed by Late Mesozoic magmatism in the Gangdese arc, South Tibet. Geophys. Res. Lett. 49, e2021GL097360 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652–667 (2022).

    Article 
    ADS 

    Google Scholar
     

  • van Dinther, Y. et al. The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical models. J. Geophys. Res. Solid Earth 118, 6183–6202 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dal Zilio, L., Kissling, E., Gerya, T. & van Dinther, Y. Slab rollback orogeny model: a test of concept. Geophys. Res. Lett. 47, e2020GL089917 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gerya, T. V. & Yuen, D. A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83–105 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Gerya, T. & Stöckhert, B. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int. J. Earth Sci. (Geol Rundsch) 95, 250–274 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Heezen, B. C., Ericson, D. B. & Ewing, M. Further evidence for a turbidity current following the 1929 Grand Banks earthquake. Deep Sea Res. (1953) 1, 193–202 (1954).

    Article 

    Google Scholar
     

  • Straume, E. O. et al. GlobSed: updated total sediment thickness in the world’s oceans. Geochem. Geophys. Geosyst. 20, 1756–1772 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chen. Geol. 145, 325–394 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pusok, A. E., Stegman, D. R. & Kerr, M. The effect of low-viscosity sediments on the dynamics and accretionary style of subduction margins. Solid Earth 13, 1455–1473 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sibson, R. H. Stress switching in subduction forearcs: implications for overpressure containment and strength cycling on megathrusts. Tectonophysics 600, 142–152 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Faulkner, D. R. et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 32, 1557–1575 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Tang, M., Ji, W. Q., Chu, X., Wu, A. & Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76–80 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, F. et al. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from whole‐rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202 (2020).

  • Guo, P. & Yang, T. Quantifying continental crust thickness using the machine learning method. J. Geophys. Res. Solid Earth 128, e2022JB025970 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, Z. D. et al. Distribution and its significance of dikes in southern Tibetan Plateau. Acta Petrol. Sin. 37, 3399–3412 (2021).

    Article 

    Google Scholar
     

  • van Hinsbergen, D. J. J. et al. Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics 30, TC5003 (2011).

    ADS 

    Google Scholar
     

  • Hu, X. M., Garzanti, E., Moore, T. & Raffi, I. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 43, 859–862 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Orme, D. A., Carrapa, B. & Kapp, P. Sedimentology, provenance and geochronology of the upper Cretaceous–lower Eocene western Xigaze forearc basin, southern Tibet. Basin Res. 27, 387–411 (2015).

    Article 
    ADS 

    Google Scholar
     

  • An, W., Hu, X. M., Garzanti, E., Wang, J. G. & Liu, Q. New precise dating of the India‐Asia collision in the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett. 48, e2020GL090641 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, D. C. et al. Interplay between oceanic subduction and continental collision in building continental crust. Nat. Commun. 13, 7141 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapp, P. & DeCelles, P. G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159–254 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ma, L. et al. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere–asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet). Lithos 172–173, 17–30 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ma, L. et al. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr–Nd–Hf–O isotopic evidence from Zhengga diorite–gabbro. Chem. Geol. 349–350, 54–70 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Meng, Y. K. et al. Late Mesozoic diorites of the middle Gangdese magmatic belt of southern Tibet: new insights from SHRIMP U-Pb dating and Sr-Nd-Hf-O isotopes. Lithos 404–405, 106420 (2021).

    Article 

    Google Scholar
     

  • Guan, Q. et al. Zircon U-Pb chronology, geochemistry of the Late Cretaceous mafic magmatism in the southern Lhasa Terrane and its implications. Acta Petrol. Sin. 27, 2083–2094 (2011).

    CAS 

    Google Scholar
     

  • Tang, Y. et al. Geochemistry and petrogenesis of Late Cretaceous Namling gabbro and dykes in Gangdese batholith, Tibet. Acta Petrol. Sin. 35, 387–404 (2019).

    Article 

    Google Scholar
     

  • Qi, Y. et al. Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene (~64 Ma) pseudoleucite phonolitic rocks in central Lhasa terrane. Lithos 302–303, 178–188 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Huang, F. et al. Fluid flux in the lithosphere beneath southern Tibet during Neo-Tethyan slab breakoff: evidence from an appinite–granite suite. Lithos 344–345, 324–338 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y. F. et al. Along-arc variations in isotope and trace element compositions of Paleogene gabbroic rocks in the Gangdese batholith, southern Tibet. Lithos 324–325, 877–892 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Huang, F., Rooney, T. O., Xu, J. F. & Zeng, Y. C. Magmatic record of continuous Neo-Tethyan subduction after initial India-Asia collision in the central part of southern Tibet. GSA Bull. 133, 1600–1612 (2020).


    Google Scholar
     

  • Lei, M., Chen, J. L., Huang, F. & Liu, Y. X. Mantle wedge enrichment beneath southern Tibet during the late stage (100–45 Ma) of oceanic subduction: geochemical constraints from mantle-derived intrusions. Lithos 406–407, 106505 (2021).

    Article 

    Google Scholar
     

  • Yan, H. Y. et al. Arc andesitic rocks derived from partial melts of mélange diapir in subduction zones: evidence from whole-rock geochemistry and Sr-Nd-Mo isotopes of the Paleogene Linzizong volcanic succession in southern Tibet. J. Geophys. Res. Solid Earth 124, 456–475 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mo, X. X. et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem. Geol. 250, 49–67 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, S. et al. 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications. Chin. Sci. Bull. 49, 1970–1979 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Dong, G. C. Linzizong Volcanic Rocks and Implications for Probing India Eurasia Collision Process in Linzhou Volcanic Basin, Tibet. PhD thesis, China Univ. Geosciences, Beijing (2002).

  • Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Richards, A. et al. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett. 236, 773–796 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aizawa, Y., Tatsumi, Y. & Yamada, H. Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism. Island Arc 8, 38–46 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Tatsumi, Y. & Hanyu, T. Geochemical modeling of dehydration and partial melting of subducting lithosphere: toward a comprehensive understanding of high‐Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem. Geophys. Geosyst. 4, 1081 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: an experimental study. J. Petrology 49, 717–740 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wilson, M. Igneous Petrogenesis. (Springer, 1989).

  • Faure, G. & Mensing, T. M. Isotopes: Principles and Applications (Wiley, 2005).

  • Crameri, F. et al. A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’ method: modelling topography in geodynamics. Geophys. J. Int. 189, 38–54 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2014).

  • Ranalli, G. Rheology of the Earth (Springer-Verlag, 2011).

  • Cai, F. L. et al. Late Triassic paleogeographic reconstruction along the Neo–Tethyan Ocean margins, southern Tibet. Earth Planet. Sci. Lett. 435, 105–114 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hennig, J., Hall, R. & Armstrong, R. A. U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: extension-related metamorphism and magmatism during the early stages of mountain building. Gondwana Res. 32, 41–63 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, J. G. et al. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): the terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Res. 34, 84–98 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mitchell, N. C. Modeling Cenozoic sedimentation in the central equatorial Pacific and implications for true polar wander. J. Geophys. Res. Solid Earth 103, 17749–17766 (1998).

    Article 

    Google Scholar
     

  • Savoye, B., Babonneau, N., Dennielou, B. & Bez, M. Geological overview of the Angola–Congo margin, the Congo deep-sea fan and its submarine valleys. Deep Sea Res. PT II 56, 2169–2182 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, 2003RG000127 (2004).

    Article 

    Google Scholar
     

  • Hu, X. M., An, W., Garzanti, E. & Liu, Q. Recognition of trench basins in collisional orogens: insights from the Yarlung Zangbo suture zone in southern Tibet. Sci. China Earth Sci. 63, 2017–2028 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Noda, A. Forearc basins: types, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879–895 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Straub, S. M., Gómez-Tuena, A. & Vannucchi, P. Subduction erosion and arc volcanism. Nat. Rev. Earth Environ. 1, 574–589 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, H. et al. Data from: India-Eurasia convergence speed-up by passive-margin sediment subduction. Dryad https://doi.org/10.5061/dryad.8kprr4xwr (2024).

  • Irvine, T. N. & Baragar, W. R. A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523–548 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peccerillo, A. & Taylor, S. R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 58, 63–81 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hasterok, D. et al. New maps of global geological provinces and tectonic plates. Earth Sci. Rev. 231, 104069 (2022).

    Article 

    Google Scholar
     

  • Den Hartog, S. A. M., Niemeijer, A. R. & Spiers, C. J. New constraints on megathrust slip stability under subduction zone P–T conditions. Earth Planet. Sci. Lett. 353–354, 240–252 (2012).

    Article 

    Google Scholar
     

  • Di Toro, G. et al. Fault lubrication during earthquakes. Nature 471, 494–498 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tsutsumi, A. & Shimamoto, T. High‐velocity frictional properties of gabbro. Geophy. Res. Lett. 24, 699–702 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Chester, F. M. & Higgs, N. G. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. J. Geophys. Res. Solid Earth 97, 1859–1870 (1992).

    Article 

    Google Scholar
     

  • Del Gaudio, P. et al. Frictional melting of peridotite and seismic slip. J. Geophys. Res. Solid Earth 114, B06306 (2009).

    ADS 

    Google Scholar
     

  • Schultz, R. A. Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mech. Rock Eng. 28, 1–15 (1995).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments