Giemsch, L. & Hansen, S. (eds) The Caucasus: Bridge Between the Urban Centres in Mesopotamia and the Pontic Steppes in the 4th and 3th millennium BC. Proceedings of the Caucasus Conference Frankfurt 2018 (Schnell & Steiner, 2021).
Scott, A. et al. Emergence and intensification of dairying in the Caucasus and Eurasian steppes. Nat. Ecol. Evol. 6, 813â822 (2022).
Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167â172 (2015).
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207â211 (2015).
Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 590 (2019).
Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117â126 (2023).
Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).
Hansen, S. in Western Anatolia before Troy: Proto-urbanisation in the 4th Millennium BC? (eds Horejs, B. & Mehofer, M.) 243â260 (Austrian Academy of Sciences Press, 2014).
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534â545 (2017).
Kohl, P. L. The Making of Bronze Age Eurasia (Cambridge Univ. Press, 2007).
Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).
Balanovsky, O. et al. Parallel evolution of genes and languages in the Caucasus region. Mol. Biol. Evol. 28, 2905â2920 (2011).
Yunusbayev, B. et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol. Biol. Evol. 29, 359â365 (2012).
Yaka, R. et al. Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Curr. Biol. 31, 2455â2468 (2021).
Lazaridis, I. et al. Ancient DNA from Mesopotamia suggests distinct Pre-Pottery and Pottery Neolithic migrations into Anatolia. Science 377, 982â987 (2022).
Skourtanioti, E. et al. Genomic history of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158â1175 (2020).
Anthony, D. W. et al. The Eneolithic cemetery at Khvalynsk on the Volga River. Praehist. Zeitschr. 97, 22â67 (2022).
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499â503 (2015).
Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of major human admixture events during the European Holocene. Elife 11, e77625 (2022).
Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022).
Penske, S. et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature 620, 358â365 (2023).
Mimokhod, R. A., Gak, E. I., Khomutova, T. E., Ryabogina, N. E. & Borisov, A. E. Paleoekologiya â kulâtura â metalloproizvodstvo: printsipy i mekhanizmy epokhi v kul’turnom nasledii Vostochnoy Yevropy v sredniye veka – pervyye pozdney bronzy. Ross. Arkheol. 24â38 (2022).
Reinhold, S., Belinskiy, A. B. & Atabiev, B. C. in Der Kaukasus zwischen Osteuropa und Vorderem Orient in der Bronze- und Eisenzeit (eds KaÅ¡uba, M. T. et al.) 405â456 (Dietrich Reimer, 2020).
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419â424 (2016).
Shishlina, N. Reconstruction of the Bronze Age of the Caspian Steppes: Life Styles and Life Ways of Pastoral Nomads Vol. 1876 (Archaeopress, 2008).
Andreeva, M. V. Vostochnomanychskaya Kata-Kombnaya Kulâtura: Analiz Materialov Pogrebal’nykh Pamyatnikov (TAUS, 2014).
Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143â151 (2023).
Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).
Golovanova, L. V. et al. The Epipaleolithic of the Caucasus after the Last Glacial Maximum. Quat. Int. 337, 189â224 (2014).
Manko, V. O. & Chkhatarashvili, G. L. in Aere Perennius. More Lasting than Bronze. Essays in Honour of Valentin Dergachev on the Occasion of his 80th Birthday (ed. Dergacheva, L. V.) 101â118 (Stratum Library, 2023).
Helwing, B. et al. The Kura Projects: New Research on the Later Prehistory of the Southern Caucasus Vol. 16 (Dietrich Reimer, 2017).
Baudouin, E. Lâarchitecture de Mésopotamie et Du Caucase de La Fin Du 7e á La Fin Du 5e Millénaire Vol. 2 (Brepols, 2021).
Guarino-Vignon, P. et al. Genome-wide analysis of a collective grave from Mentesh Tepe provides insight into the population structure of early neolithic population in the South Caucasus. Commun. Biol. 6, 309 (2023).
Korenevskiy, S. N. Rozhdenie Kurgana: (pogrebalnye Pamyatniki Eneoliticheskogo Vremeni Predkavkazya I Volgo-Donskogo Mezhdurechia) (TAUS, 2012).
Gorelik, A., Tsybryi, A. V. & Tsybryi, V. V. âNeolithisationâ in the NE Sea of Azov region: one step forward, two steps back? Doc. Praehist. 43, 139â160 (2016).
Hollund, H. I., Higham, T., Belinskij, A. & Korenevskij, S. Investigation of palaeodiet in the North Caucasus (South Russia) Bronze Age using stable isotope analysis and AMS dating of human and animal bones. J. Archaeol. Sci. 37, 2971â2983 (2010).
Shishlina, N., Zazovskaya, E., van der Plicht, J. & Sevastyanov, V. Isotopes, plants, and reservoir effects: case study from the Caspian steppe Bronze Age. Radiocarbon 54, 749â760 (2012).
Reinhold, S. Der Kaukasus und die Eurasische Steppe â Konjunkturen einer kulturellen Kontaktzone während der Bronze- und frühen Eisenzeit. in You Only See What You Know. You Only Know What You See. Global Historic Perspectives on Intercultural Phenomena of Mobility. Festschrift Für Hermann Parzinger zum 65. Geburtstag (eds Schneeweiss, J. et al.) 437â460 (Marie Leidorf, 2024).
Hermes, T. R. et al. Early integration of pastoralism and millet cultivation in Bronze Age Eurasia. Proc. Biol. Sci. 286, 20191273 (2019).
Honeychurch, W. et al. The earliest herders of East Asia: examining Afanasievo entry to Central Mongolia. Archaeol. Res. Asia 26, 100264 (2021).
Korenevskiy, S. N. & Berezin, Y. B. Eneolithic Kurgan Burials from the Cemetery of Konstantinovsky-6. Strat. Plus 2/17, 385â396 (2017).
Knipper, C. et al. Diet and subsistence in Bronze Age pastoral communities from the southern Russian steppes and the North Caucasus. PLoS ONE 15, e0239861 (2020).
Reinhold, S. et al. in Appropriating Innovations (eds Stockhammer, P. W. & Maran, J.) 78â97 (Oxbow, 2017).
Librado, P. et al. The origins and spread of domestic horses from the Western Eurasian steppes. Nature 598, 634â640 (2021).
de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).
Burmeister, S. in Appropriating Innovations (eds Stockhammer, P. W. & Maran, J.) 69â77 (Oxbow, 2017).
Shishlina, N., Ankusheva, P., Orfinskaya, O. & Kiseleva, D. in The Indo-European Puzzle Revisited. Integrating Archaeology, Genetics, and Linguistics (eds Kristian, K., Kroonen, G. & Willerslev, E.) 275â281 (Cambridge Univ. Press, 2023).
Hansen, S. in The Caucasus (eds Giemsch, L. & Hansen, S.) 31â86 (Schnell & Steiner, 2021).
Jeong, C. et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA 115, E11248âE11255 (2018).
Wilkin, S. et al. Dairying enabled Early Bronze Age Yamnaya steppe expansions. Nature 598, 629â633 (2021).
Kaiser, E. Das dritte Jahrtausend im osteuropäischen Steppenraum: Kulturhistorische Studien zu prähistorischer Subsistenzwirtschaft und Interaktion mit benachbarten Räumen (Freie Universität Berlin, 2019).
Batiuk, S. D. The fruits of migration: understanding the âlongue duréeâ and the socio-economic relations of the Early Transcaucasian Culture. J. Anthropol. Archaeol. 32, 449â477 (2013).
PerÅoiu, A., Ionita, M. & Weiss, H. Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event â a hypothesis. Clim. Past 15, 781â793 (2019).
Reinhold, S. et al. At the onset of settled pastoralism – implications of archaeozoological and isotope analyses from Bronze Age sites in the North Caucasus. Quat. Int. https://doi.org/10.1016/j.quaint.2023.05.008 (2023).
Reinhold, S., Korobov, D. S. & Belinskiy, A. B. Landschaftsarchäologie im Nordkaukasus: Studien zu einer neu entdeckten bronzezeitlichen Kulturlandschaft im Hochgebirge des Nordkaukasus Vol. 38 (Habelt, 2017).
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758â15763 (2013).
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, db.prot5448 (2010).
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B 370, 20130624 (2015).
Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).
Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737â748 (2013).
Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279â2300 (2020).
Kapp, J. D., Green, R. E. & Shapiro, B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J. Hered. 112, 241â249 (2021).
Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010).
Rohrlach, A. B. et al. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci. Rep. 11, 15005 (2021).
Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918â925 (2015).
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinform. 15, 356 (2014).
Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553â559 (2013).
Furtwängler, A. et al. Ratio of mitochondrial to nuclear DNA affects contamination estimates in ancient DNA analysis. Sci. Rep. 8, 1â8 (2018).
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58âW63 (2016).
Rohrlach, A. B., Tuke, J., Popli, D. & Haak, W. BREADR: An R package for the Bayesian estimation of genetic relatedness from low-coverage genotype data. Preprint at bioRxiv https://doi.org/10.1101/2023.04.17.537144 (2023).
Alaçamlı, E. et al. READv2: advanced and user-friendly detection of biological relatedness in archaeogenomics. Genome Biol. 25, 216 (2024).
Chao, F., Gerland, P., Cook, A. R. & Alkema, L. Systematic assessment of the sex ratio at birth for all countries and estimation of national imbalances and regional reference levels. Proc. Natl Acad. Sci. USA 116, 9303â9311 (2019).
Sedgwick, P. Multiple significance tests: the Bonferroni correction. BMJ 344, e509 (2012).
Champely, S. Pwr: Basic Functions for Power Analysis. https://CRAN.R-project.org/package=pwr (2020).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 2013).
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409â413 (2014).
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065â1093 (2012).
Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757â762 (2010).
Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225â229 (2014).
Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113â1118 (2014).
Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87â91 (2014).
Rasmussen, M. et al. The ancestry and affiliations of Kennewick Man. Nature 523, 455â458 (2015).
Kılınç, G. M. et al. The Demographic development of the first farmers in Anatolia. Curr. Biol. 26, 2659â2666 (2016).
Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499â503 (2016).
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200â205 (2016).
van den Brink, E. C. M. et al. A Late Bronze Age II clay coffin from Tel Shaddud in the Central Jezreel Valley, Israel: context and historical implications. Levantina 49, 105â135 (2017).
Mittnik, A. et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018).
Harney, Ã. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336 (2018).
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197â203 (2018).
KrzewiÅska, M. et al. Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads. Sci. Adv. 4, eaat4457 (2018).
de Damgaard, P. B. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369â374 (2018).
Feldman, M. et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 10, 1218 (2019).
Sikora, M. et al. The population history of northeastern Siberia since the Pleistocene. Nature 570, 182â188 (2019).
Flegontov, P. et al. Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 570, 236â240 (2019).
Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966â976 (2019).
Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).
Yu, H. et al. Paleolithic to Bronze Age Siberians reveal connections with First Americans and across Eurasia. Cell 181, 1232â1245 (2020).
Agranat-Tamir, L. et al. The genomic history of the Bronze Age Southern Levant. Cell 181, 1146â1157 (2020).
Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasiaâs Eastern Steppe. Cell 183, 890â904 (2020).
Kılınç, G. M. et al. Human population dynamics and Yersinia pestis in ancient northeast Asia. Sci. Adv. 7, eabc4587 (2021).
Saag, L. et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 7, eabd6535 (2021).
Zhang, F. et al. The genomic origins of the Bronze Age Tarim Basin mummies. Nature 599, 256â261 (2021).
AltınıÅık, N. E. et al. A genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia during the Neolithic Transition. Sci. Adv. 8, eabo3609 (2022).
Koptekin, D. et al. Spatial and temporal heterogeneity in human mobility patterns in Holocene Southwest Asia and the East Mediterranean. Curr. Biol. 33, 41â57 (2023).
Wang, X. et al. Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proc. Natl Acad. Sci. USA 120, e2210611120 (2023).
Mallick, S. et al. The Allen Ancient DNA Resource (AADR): a curated compendium of ancient human genomes. Sci. Data 11:182 (2024).
Schmid, C. et al. Poseidon â a framework for archaeogenetic human genotype data management. eLife https://doi.org/10.7554/elife.98317.1 (2024).
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655â1664 (2009).
Petr, M., Vernot, B. & Kelso, J. admixrâR package for reproducible analyses using ADMIXTOOLS. Bioinformatics 35, 3194â3195 (2019).
Harney, Ã., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 217, iyaa045 (2021).
Delaneau, O. GLIMPSE: Low Coverage Calling of Genotypes https://github.com/odelaneau/GLIMPSE (2020).
Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120â126 (2021).
Rohrlach, B. BenRohrlach/CaucasusIIAncientDNAStudy: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.13709775 (2024).