Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428â435 (2008).
Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc. Res. 117, 1450â1488 (2021).
Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91â96 (2022).
Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430â433 (2019).
Gutstein, D. E. & Fuster, V. Pathophysiology and clinical significance of atherosclerotic plaque rupture. Cardiovasc. Res. 41, 323â333 (1999).
Thygesen, K. et al. Third universal definition of myocardial infarction. Circulation 126, 2020â2035 (2012).
Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127â2143 (2018).
Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).
Ivey, M. J. et al. Resident fibroblast expansion during cardiac growth and remodeling. J. Mol. Cell. Cardiol. 114, 161â174 (2018).
Forte, E. et al. Dynamic interstitial cell response during myocardial infarction predicts resilience to rupture in genetically diverse mice. Cell Rep. https://doi.org/10.1016/j.celrep.2020.02.008 (2020).
Martini, E. et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overloadâdriven heart failure reveals extent of immune activation. Circulation 140, 2089â2107 (2019).
Zaman, R. et al. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity 54, 2057â2071.e6 (2021).
Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29 (2019).
Matsa, E., Burridge, P. W. & Wu, J. C. Human stem cells for modeling heart disease and for drug discovery. Sci. Transl. Med. 6, 239ps6 (2014).
Herum, K. M. et al. Cardiac fibroblast sub-types in vitro reflect pathological cardiac remodeling in vivo. Matrix Biol. Plus 15, 100113 (2022).
Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
Amrute, J. M. et al. Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nat. Commun. 13, 882 (2022).
Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466â482 (2020).
Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature https://doi.org/10.1038/S41586-022-04817-8 (2022).
Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263â280 (2022).
LitviÅuková, M. et al. Cells of the adult human heart. Nature 588, 466â472 (2020).
Reichart, D. et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 377, eabo1984 (2022).
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods https://doi.org/10.1038/nmeth.4380 (2017).
Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell 184, 5053â5069.e23 (2021).
Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature https://doi.org/10.1038/s41586-022-05060-x (2022).
Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575â579 (2021).
RC, W. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280â1289 (2019).
Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438â443 (2021).
Amrute, J. M. et al. Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. Nat. Cardiovasc. Res. 2, 399â416 (2023).
Alexanian, M. et al. Chromatin remodelling drives immuneâfibroblast crosstalk in heart failure pathogenesis. Nature https://doi.org/10.1038/s41586-024-08085-6 (2024).
Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119â1131 (2017).
Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 23, 1â31 (2022).
Lavine, K. J., Long, F., Choi, K., Smith, C. & Ornitz, D. M. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 135, 3161â3171 (2008).
Kadyrov, F. F. et al. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. Preprint at bioRxiv https://doi.org/10.1101/2022.08.04.502542 (2023).
Koenig, A. L. et al. Genetic mapping of monocyte fate decisions following myocardial infarction. Preprint at bioRxiv https://doi.org/10.1101/2023.12.24.573263 (2023).
Strunk, M. et al. Toward quantitative multisite preclinical imaging studies in acute myocardial infarction: evaluation of the immune-fibrosis axis. J. Nucl. Med. 65, 287â293 (2024).
Hall, C., Gehmlich, K., Denning, C. & Pavlovic, D. Complex relationship between cardiac fibroblasts and cardiomyocytes in health and disease. J. Am. Heart Assoc. 10, 1â15 (2021).
Xin, L. et al. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front. Oncol. 11, 3187 (2021).
Khalil, H. et al. Fibroblast-specific TGF-βâSmad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 127, 3770â3783 (2017).
Stratton, M. S. et al. Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation. Circ. Res. 125, 662 (2019).
Bujak, M. & Frangogiannis, N. G. The role of interleukin-1 in the pathogenesis of heart disease. Arch. Immunol. Ther. Exp. (Warsz.) 57, 165 (2009).
Bajpai, G. et al. Tissue resident CCR2â and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263â278 (2019).
Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234â1245 (2018).
Ikeuchi, M. et al. Inhibition of TGF-β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc. Res. 64, 526â535 (2004).
Dewald, O. et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96, 881â889 (2005).
Mulè, M. P., Martins, A. J. & Tsang, J. S. Normalizing and denoising protein expression data from droplet-based single cell profiling. Nat. Commun. 13, 2099 (2022).
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 1â15 (2019).
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573â3587.e29 (2021).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1â21 (2014).
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408â1414 (2020).
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 20 (2018).