Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarianâdinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229â261 (2012).
Fournier, A. The story of symbiosis with zooxanthellae, or how they enable their host to thrive in a nutrient poor environment. BioSciences Master Reviews https://biologie.ens-lyon.fr/biologie/ressources/bibliographies/pdf/m1-12-13-biosci-reviews-fournier-a-2c-m.pdf?lang=fr (2013).
Coates, A. G. & Jackson, J. B. C. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 13, 363â378 (1987).
Scrutton, C. T. The Palaeozoic corals, II: structure, variation and palaeoecology. Proc. Yorks. Geol. Soc. 52, 1â57 (1998).
Scrutton, C. T. The Palaeozoic corals, I: origins and relationships. Proc. Yorks. Geol. Soc. 51, 177â208 (1997).
Bridge, T. C. L., Baird, A. H., Pandolfi, J. M., McWilliam, M. J. & Zapalski, M. K. Functional consequences of Palaeozoic reef collapse. Sci. Rep. 12, 1386 (2022).
Copper, P. & Scotese, C. R. in Extreme Depositional Environments: Mega End Members in Geologic Time (eds Chan, M. A. & Archer, A. W.) https://doi.org/10.1130/0-8137-2370-1.209 (2003).
Joachimski, M. M. et al. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth Planet. Sci. Lett. 284, 599â609 (2009).
Ries, J. B. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795â2849 (2010).
Mora, C. I., Driese, S. G. & Seager, P. G. Carbon dioxide in the Paleozoic atmosphere: evidence from carbon-isotope compositions of pedogenic carbonate. Geology 19, 1017â1020 (1991).
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A. & Demicco, R. V. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 1086â1088 (2001).
Ridgwell, A. & Zeebe, R. E. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299â315 (2005).
Zeebe, R. E. & Westbroek, P. A. Simple model for the CaCO3 saturation state of the ocean: the âStrangeloveâ, the âNeritanâ, and the âCretanâ Ocean. Geochem. Geophys. Geosyst. 4, 1104 (2003).
Copper, P. Ancient reef ecosystem expansion and collapse. Coral Reefs 13, 3â11 (1994).
Dopieralska, J. Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: evidence from Nd isotope composition of conodonts. Geochem. Geophys. Geosyst. 10, Q03015 (2009).
Jakubowicz, M. et al. At the southern limits of the Devonian reef zone: palaeoecology of the Aferdou el Mrakib reef (Givetian, eastern Anti-Atlas, Morocco). Geol. J. 54, 10â38 (2019).
Oczlon, M. S. Ocean currents and unconformities: the North Gondwana Middle Devonian. Geology 18, 509â512 (1990).
Burchette, T. P. in European Fossil Reef Models (ed. Toomey, D. F.) https://doi.org/10.2110/scn.83.02.0000 (SEPM Society for Sedimentary Geology, 1981).
Copper, P. Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181, 27â65 (2002).
McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 289â297 (2004).
Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501â1503 (1982).
Sallan, L. & Galimberti, A. K. Body-size reduction in vertebrates following the end-Devonian mass extinction. Science 350, 812â815 (2015).
Zapalski, M. K., Nowicki, J., Jakubowicz, M. & Berkowski, B. Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 416â429 (2017).
Percival, L. M. E. et al. Pulses of enhanced continental weathering associated with multiple Late Devonian climate perturbations: evidence from osmium-isotope compositions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 240â249 (2019).
Zapalski, M. K. Evidence of photosymbiosis in Palaeozoic tabulate corals. Proc. R. Soc. B 281, 20132663 (2014).
Blackall, L. L., Wilson, B. & van Oppen, M. J. H. Coralâthe worldâs most diverse symbiotic ecosystem. Mol. Ecol. 24, 5330â5347 (2015).
Tambutté, S. et al. Coral biomineralization: from the gene to the environment. J. Exp. Mar. Biol. Ecol. 408, 58â78 (2011).
Macko, S. A., Fogel, M. L., Hare, P. E. & Hoering, T. C. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem. Geol. 65, 79â92 (1987).
Bada, J. L., Schoeninger, M. J. & Schimmelmann, A. Isotopic fractionation during peptide bond hydrolysis. Geochim. Cosmochim. Acta 53, 3337â3341 (1989).
FerrierâPagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723â740 (2019).
Frankowiak, K. et al. Photosymbiosis and the expansion of shallow-water corals. Sci. Adv. 2, e1601122 (2016).
Gannes, L. Z., OâBrien, D. M. & del Rio, C. M. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78, 1271â1276 (1997).
Muscatine, L. & DâElia, C. F. The uptake, retention, and release of ammonium by reef corals. Limnol. Oceanogr. 23, 725â734 (1978).
Wang, X. T. et al. Isotopic composition of carbonate-bound organic nitrogen in deep-sea scleractinian corals: a new window into past biogeochemical change. Earth Planet. Sci. Lett. 400, 243â250 (2014).
Wang, X. T. et al. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals. Earth Planet. Sci. Lett. 441, 125â132 (2016).
Wang, X. T. et al. Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: a new method and proxy evaluation at Bermuda. Geochim. Cosmochim. Acta 148, 179â190 (2015).
Muscatine, L. et al. Stable isotopes (13C and 15N) of organic matrix from coral skeleton. Proc. Natl Acad. Sci. USA 102, 1525â1530 (2005).
Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77â82 (2022).
Kast, E. R. et al. Cenozoic megatooth sharks occupied extremely high trophic positions. Sci. Adv. 8, eabl6529 (2022).
Kast, E. R. et al. Nitrogen isotope evidence for expanded ocean suboxia in the Early Cenozoic. Science 364, 386â389 (2019).
MartÃnez-GarcÃa, A. et al. Laboratory assessment of the impact of chemical oxidation, mineral dissolution, and heating on the nitrogen isotopic composition of fossil-bound organic matter. Geochem. Geophys. Geosyst. 23, e2022GC010396 (2022).
Tornabene, C., Martindale, R. C., Wang, X. T. & Schaller, M. F. Detecting photosymbiosis in fossil scleractinian corals. Sci. Rep. 7, 9465 (2017).
Wang, X. T. et al. Oceanic nutrient rise and the Late Miocene inception of Pacific oxygen-deficient zones. Proc. Natl Acad. Sci. USA 119, e2204986119 (2022).
Campoy, A. N. et al. The origin and correlated evolution of symbiosis and coloniality in scleractinian corals. Front. Mar. Sci. 7, 461 (2020).
McFadden, C. S. et al. Phylogenomics, origin, and diversification of anthozoans (phylum Cnidaria). Syst. Biol. 70, 635â647 (2021).
Swart, P. K. Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci. Rev. 19, 51â80 (1983).
Barbeitos, M. S., Romano, S. L. & Lasker, H. R. Repeated loss of coloniality and symbiosis in scleractinian corals. Proc. Natl Acad. Sci. USA 107, 11877â11882 (2010).
Poty, E. Morphological limits to diversification of the rugose and tabulate corals. Palaeoworld 19, 389â400 (2010).
Zapalski, M. K. & Berkowski, B. The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis. Coral Reefs 38, 137â147 (2019).
LaJeunesse, T. et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Ser. 284, 147â161 (2004).
Król, J. J., Berkowski, B., Denayer, J. & Zapalski, M. K. Deducing photosymbiosis in extinct heliolitid corals. Coral Reefs 43, 91â105 (2024).
Reuter, M., Brachert, T. C. & Kroeger, K. F. Diagenesis of growth bands in fossil scleractinian corals: identification and modes of preservation. Facies 51, 146â159 (2005).
Jakubowicz, M. et al. Stable isotope signatures of Middle Palaeozoic ahermatypic rugose corals â deciphering secondary alteration, vital fractionation effects, and palaeoecological implications. PLoS ONE 10, e0136289 (2015).
Frankowiak, K., Mazur, M., Gothmann, A. M. & Stolarski, J. Diagenetic alteration of Triassic coral from the aragonite konservat-Lagerstätte in Alakir Ãay, Turkey: implications for geochemical measurements. PALAIOS 28, 333â342 (2013).
Stanton, R. J. Jr Nutrient models for the development and location of ancient reefs. Geo.Alp 3, 191â206 (2006).
Algeo, T. J., Meyers, P. A., Robinson, R. S., Rowe, H. & Jiang, G. Q. Icehouseâgreenhouse variations in marine denitrification. Biogeosciences 11, 1273â1295 (2014).
Percival, L. M. E. et al. Combined nitrogen-isotope and cyclostratigraphy evidence for temporal and spatial variability in FrasnianâFamennian environmental change. Geochem. Geophys. Geosyst. 23, e2021GC010308 (2022).
Martinez-Garcia, A. et al. Iron fertilization of the Subantarctic Ocean during the last Ice Age. Science 343, 1347â1350 (2014).
Ren, H. et al. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle. Proc. Natl Acad. Sci. USA 114, E6759âE6766 (2017).
Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244â248 (2009).
Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanogr. Paleoclimatol. 27, e2012PA002321 (2012).
Straub, M. et al. Changes in North Atlantic nitrogen fixation controlled by ocean circulation. Nature 501, 200â203 (2013).
Studer, A. S. et al. Ice AgeâHolocene similarity of foraminifera-bound nitrogen isotope ratios in the Eastern Equatorial Pacific. Paleoceanogr. Paleoclimatol. 36, e2020PA004063 (2021).
Duprey, N. N. et al. Megacity development and the demise of coastal coral communities: evidence from coral skeleton δ15N records in the Pearl River estuary. Glob. Change Biol. 26, 1338â1353 (2020).
Conti-Jerpe, I. E. et al. Trophic strategy and bleaching resistance in reef-building corals. Sci. Adv. 6, eaaz5443 (2020).
Belka, Z. Conodont colour alteration patterns in Devonian rocks of the eastern Anti-Atlas, Morocco. J. Af. Earth Sci. (Middle East) 12, 417â428 (1991).
Ebneth, S., Diener, A., Buhl, D. & Veizer, J. Strontium isotope systematics of conodonts: Middle Devonian, Eifel Mountains, Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132, 79â96 (1997).
Löw, M. et al. The initial phase of the Hönne Valley Reef at Binolen (northern Rhenish Massif, Middle Devonian). Palaeobio. Palaeoenv. https://doi.org/10.1007/s12549-022-00540-4 (2022).
Radice, V. Z., Hoegh-Guldberg, O., Fry, B., Fox, M. D. & Dove, S. G. Upwelling as the major source of nitrogen for shallow and deep reef-building corals across an oceanic atoll system. Funct. Ecol. 33, 1120â1134 (2019).
Baker, D. M., Webster, K. L. & Kim, K. Caribbean octocorals record changing carbon and nitrogen sources from 1862 to 2005. Glob. Change Biol. 16, 2701â2710 (2010).
Erler, D. V. et al. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: implications for coastal nutrient cycling in the Great Barrier Reef Lagoon. Earth Planet. Sci. Lett. 434, 161â170 (2016).
Ren, H. et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356, 749â752 (2017).
Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M. & Lipschultz, F. Nitrate isotopic composition between Bermuda and Puerto Rico: implications for N2 fixation in the Atlantic Ocean. Global Biogeochem. Cycles 22, GB3014 (2008).
Marconi, D. et al. Tropical dominance of N2 fixation in the North Atlantic Ocean. Global Biogeochem. Cycles 31, 1608â1623 (2017).
Cline, J. D. & Kaplan, I. R. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Mar. Chem. 3, 271â299 (1975).
Fripiat, F. et al. The impact of incomplete nutrient consumption in the Southern Ocean on global mean ocean nitrate δ15N. Global Biogeochem. Cycles 37, e2022GB007442 (2023).
Fripiat, F. et al. Nitrogen isotopic constraints on nutrient transport to the upper ocean. Nat. Geosci. 14, 855â861 (2021).
Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site. Global Biogeochem. Cycles 19, GB1018 (2005).
Casciotti, K. L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim. Cosmochim. Acta 73, 2061â2076 (2009).
Marshall, T. A. et al. The Agulhas Current transports signals of local and remote Indian Ocean nitrogen cycling. J. Geophys. Res. Oceans 128, e2022JC019413 (2023).
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. & Dunne, J. P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445, 163â167 (2007).
Hu, Y. & Fu, Q. Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys. 7, 5229â5236 (2007).
Lucas, C., Timbal, B. & Nguyen, H. The expanding tropics: a critical assessment of the observational and modeling studies. WIREs Clim. Change 5, 89â112 (2014).
Brandes, J. A. & Devol, A. H. A global marine-fixed nitrogen isotopic budget: implications for Holocene nitrogen cycling. Global Biogeochem. Cycles 16, 1120 (2002).
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80â83 (2018).
Scotese, C. R. Atlas of Earth History, Vol. 1, Paleogeography (PALEOMAP project, 2001).
Schlitzer, R. Ocean Data View v.5.7.2. https://odv.awi.de/ (2023).
Becker, R. et al. The GivetianâFrasnian Hönne Valley Reef Complex (northern Sauerland) â an outline of stratigraphy and facies development. Münster. Forsch. Geol. Paläont. 108, 126â140 (2016).
Schröder, S. & Salerno, C. Korallenfauna und Fazies givetischer Kalksteinabfolgen (Cürten-/Dreimühlen-Formation) der Dollendorfer Mulde (Devon, Rheinisches Schiefergebirge/Eifel). Senckenbergiana Lethaea 81, 111â133 (2001).
Stadelmaier, M. et al. Ãstige tabulate Korallen-Gemeinschaften aus dem Mitteldevon der Sötenicher Mulde (Eifel). Zitteliana B25, 5â38 (2005).
Ernst, A., Königshof, P., Taylor, P. D. & Bohatý, J. Microhabitat complexityâan example from Middle Devonian bryozoan-rich sediments in the Blankenheim Syncline (northern Eifel, Rheinisches Schiefergebirge). Palaeobiol. Palaeoenv. 91, 257â284 (2011).
Wendt, J. Middle and Late Devonian paleogeography of the eastern Anti-Atlas (Morocco). Int. J. Earth Sci. (Geol. Rundsch.) 110, 1531â1544 (2021).
Schindler, E. & Wehrmann, A. Genesis and internal architecture of the Middle to Upper Devonian Gwirat Al Hyssan reef-mound (Western Sahara). Palaeogeogr. Palaeoclimatol. Palaeoecol. 304, 184â193 (2011).
Birenheide, R. Rugose Korallen des Devon Vol. 2 (Leitfossilien, 1978).
Birenheide, R. Chaetetida und tabulate Korallen des Devon Vol. 3 (Leitfossilien, 1985).
Schröder, S. Stratigraphie und Systematik rugoser Korallen aus dem Givetium und Unter-Frasnium des Rheinischen Schiefergebirges (Sauerland/Bergisches Land). Zitteliana B25, 39â116 (2005).
Ellison, S. The composition of conodonts. J. Paleontol. 18, 133â140 (1944).
Rejebian, V. A., Harris, A. G. & Huebner, J. S. Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geol. Soc. Am. Bull. 99, 471â479 (1987).
Epstein, A. G., Epstein, J. B. & Harris, L. D. Conodont Color Alterationâan Index to Organic Metamorphism Professional Paper 995 (US Government Printing Office, 1977).
Nicoll, R. S. & Gorter, J. D. Conodont colour alteration, thermal maturation and the geothermal history of the Canning Basin, Western Australia. The APPEA Journal 24, 243â258 (1984).
Legall, F. D., Barnes, C. R. & Macqueen, R. W. Thermal maturation, burial history and hotspot development, Paleozoic strata of southern Ontario-Quebec, from conodont and acritarch colour alteration studies. Bull. Can. Petrol. Geol. 29, 492â539 (1981).
Harris, A. G. et al. Conodont Color Alteration Index (CAI) Map and Conodont-based Age Determinations for the Winchester 30â x 60â Quadrangle and Adjacent Area, Virginia, West Virginia, and Maryland Series No. 2239 (US Geological Survey, 1994).
Helsen, S. & Königshof, P. Conodont thermal alteration patterns in Palaeozoic rocks from Belgium, northern France and western Germany. Geol. Mag. 131, 369â386 (1994).
Garcia-Lopez, S., Brime, C., Bastida, F. & Sarmiento, G. N. Simultaneous use of thermal indicators to analyse the transition from diagenesis to metamorphism: an example from the Variscan Belt of northwest Spain. Geol. Mag. 134, 323â334 (1997).
Sarmiento, G. N., GarcÃa-lópez, S. & Bastida, F. Conodont colour alteration indices (CAI) of Upper Ordovician limestones from the Iberian Peninsula. Geol. Mijnbouw 77, 77â91 (1998).
Lazreq, N. & Ali, B. Discovery of Upper Devonian conodonts and event stratigraphy from the Eastern Jebilet, Morocco. J. Afr. Earth. Sci. 196, 104699 (2022).
Königshof, P. Der Farbänderungsindex von Conodonten (CAI) in paläozoischen Gesteinen (Mitteldevon bis Unterkarbon) des Rheinischen Schiefergebirges. Cour. Forsch. Inst. Senckenb. 146, 1â118 (1992).
Königshof, P. Deformationsstrukturen und texturelle Veränderung paläozoischer Conodonten: Beispiele aus Deutschland und Frankreich. Senckenbergiana Lethaea 83, 149â156 (2003).
Raven, J. G. M. & Pluijm, B. A. V. D. Metamorphic fluids and transtension in the Cantabrian Mountains of northern Spain: an application of the conodont colour alteration index. Geol. Mag. 123, 673â681 (1986).
Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145â4153 (2001).
Moretti, S. et al. Analytical improvements and assessment of long-term performance of the oxidationâdenitrifier method. Rapid Commun. Mass Spectrom. https://doi.org/10.22541/au.168616993.39320235/v1 (2023).
Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715â2718 (1989).
Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. & Sigman, D. M. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30, 1365â1383 (2016).
McGregor, H. V. & Gagan, M. K. Diagenesis and geochemistry of porites corals from Papua New Guinea: implications for paleoclimate reconstruction. Geochim. Cosmochim. Acta 67, 2147â2156 (2003).
Müller, A., Gagan, M. K. & McCulloch, M. T. Early marine diagenesis in corals and geochemical consequences for paleoceanographic reconstructions. Geophys. Res. Lett. 28, 4471â4474 (2001).
Sayani, H. R. et al. Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals. Geochim. Cosmochim. Acta 75, 6361â6373 (2011).
Swart, P. K. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62, 1233â1304 (2015).
Hendy, E. J., Gagan, M. K., Lough, J. M., McCulloch, M. & deMenocal, P. B. Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in porites corals. Paleoceanogr. Paleoclimatol. 22, e2007PA001462 (2007).
Hudson, J. D. Stable isotopes and limestone lithification. J. Geol. Soc. 133, 637â660 (1977).
Stanley, G. D. & Swart, P. K. Evolution of the coralâzooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21, 179â199 (1995).
Munro, L. E., Longstaffe, F. J. & White, C. D. Effects of heating on the carbon and oxygen-isotope compositions of structural carbonate in bioapatite from modern deer bone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 142â150 (2008).
Schrag, D. P., DePaolo, D. J. & Richter, F. M. Reconstructing past sea surface temperatures: correcting for diagenesis of bulk marine carbonate. Geochim. Cosmochim. Acta 59, 2265â2278 (1995).
Derrick, B. & White, P. Why Welchâs test is type I error robust. TQMP 12, 30â38 (2016).
Ruxton, G. D. The unequal variance t-test is an underused alternative to Studentâs t-test and the MannâWhitney U test. Behav. Ecol. 17, 688â690 (2006).