Thursday, October 24, 2024
No menu items!
HomeNatureThe importance of family-based sampling for biobanks

The importance of family-based sampling for biobanks

  • Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018). This paper provides a broad overview of the population-based UK Biobank sample, which has had a transformative influence on epidemiology and the genetic study of complex traits.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The All of Us Research Program Investigators. The “All of Us” Research Program. N. Engl. J. Med. 381, 668–676 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Our Future Health Study Protocol. Our Future Health https://medconfidential.org/wp-content/uploads/2023/06/CLEAN-3-Protocol-V4.0-FINAL_15DEC2022_Redacted.pdf (2022).

  • Davies, N. M., Dickson, M., Davey Smith, G., van den Berg, G. J. & Windmeijer, F. The causal effects of education on health outcomes in the UK Biobank. Nat. Hum. Behav. 2, 117–125 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdellaoui, A. et al. Genetic correlates of social stratification in Great Britain. Nat. Hum. Behav. 3, 1332–1342 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yengo, L. et al. Imprint of assortative mating on the human genome. Nat. Hum. Behav. 2, 948–954 (2018). This paper introduced an approach to test the extent of assortative mating across traits using molecular genetic data.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanjak, J. S., Sidorenko, J., Robinson, M. R., Thornton, K. R. & Visscher, P. M. Evidence of directional and stabilizing selection in contemporary humans. Proc. Natl Acad. Sci. USA 115, 151–156 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gardner, E. J. et al. Reduced reproductive success is associated with selective constraint on human genes. Nature 603, 858–863 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffith, G. J. et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nat. Commun. 11, 5749 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr, D. & Springer, K. W. Advances in families and health research in the 21st century. J. Marriage Fam. 72, 743–761 (2010).

    Article 

    Google Scholar
     

  • Macmillan, L. & Tominey, E. Parental inputs and socio-economic gaps in early child development. J. Popul. Econ. 36, 1513–1543 (2023).

    Article 

    Google Scholar
     

  • Lawlor, D. A. & Mishra, G. D. (eds) Family Matters: Designing, Analysing, and Understanding Family-Based Studies in Life Course Epidemiology (Oxford Univ. Press, 2009).

  • Dicks, A., Levels, M., van der Velden, R. & Mills, M. C. How young mothers rely on kin networks and formal childcare to avoid becoming NEET in the Netherlands. Front. Sociol. 6, 787532 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bratti, M., Fiore, S. & Mendola, M. The impact of family size and sibling structure on the great Mexico–USA migration. J. Popul. Econ. 33, 483–529 (2020).

    Article 

    Google Scholar
     

  • Torche, F. Analyses of intergenerational mobility: an interdisciplinary review. Ann. Am. Acad. Pol. Soc. Sci. 657, 37–62 (2015).

    Article 

    Google Scholar
     

  • Chetty, R., Hendren, N., Kline, P. & Saez, E. Where is the land of opportunity? The geography of intergenerational mobility in the United States. Q. J. Econ. 129, 1553–1623 (2014).

    Article 

    Google Scholar
     

  • Hertz, T. et al. The inheritance of educational inequality: international comparisons and fifty-year trends. BE J. Econ. Anal. Policy 7, 48 (2008).


    Google Scholar
     

  • Taubes, G. Epidemiology faces its limits: the search for subtle links between diet, lifestyle, or environmental factors and disease is an unending source of fear—but often yields little certainty. Science 269, 164–169 (1995).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Onofrio, B. M., Lahey, B. B., Turkheimer, E. & Lichtenstein, P. Critical need for family-based, quasi-experimental designs in integrating genetic and social science research. Am. J. Public Health 103, S46–S55 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knopik, V. S. Maternal smoking during pregnancy and child outcomes: real or spurious effect? Dev. Neuropsychol. 34, 1–36 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cnattingius, S. The epidemiology of smoking during pregnancy: Smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob. Res. 6, 125–140 (2004).

    Article 

    Google Scholar
     

  • Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loos, R. J. F. 15 years of genome-wide association studies and no signs of slowing down. Nat. Commun. 11, 5900 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11, 459–463 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK Biobank. eLife 8, e39725 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, A. I. et al. Mendelian imputation of parental genotypes improves estimates of direct genetic effects. Nat. Genet. 54, 897–905 (2022). This paper demonstrates that missing genotypes of relatives can be imputed in a way that provides unbiased estimates of direct and indirect genetic effects.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howe, L. J. et al. Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nat. Genet. 54, 581–592 (2022). This paper used a large sample of siblings to estimate direct genetic effects and to demonstrate that genetic associations are inflated in samples of unrelated individuals for many traits.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaidi, A. A. & Mathieson, I. Demographic history mediates the effect of stratification on polygenic scores. eLife 9, e61548 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turchin, M. C. et al. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nat. Genet. 44, 1015–1019 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg, J. J. & Coop, G. A population genetic signal of polygenic adaptation. PLoS Genet. 10, e1004412 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. R. et al. Population genetic differentiation of height and body mass index across Europe. Nat. Genet. 47, 1357–1362 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Field, Y. et al. Detection of human adaptation during the past 2000 years. Science 354, 760–764 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Racimo, F., Berg, J. J. & Pickrell, J. K. Detecting polygenic adaptation in admixture graphs. Genetics 208, 1565–1584 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. Global genetic differentiation of complex traits shaped by natural selection in humans. Nat. Commun. 9, 1865 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieson, I. & McVean, G. Differential confounding of rare and common variants in spatially structured populations. Nat. Genet. 44, 243–246 (2012). This paper demonstrated that principal components can control for population stratification of common variants but that this approach is less successful for rare variants.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Persyn, E., Redon, R., Bellanger, L. & Dina, C. The impact of a fine-scale population stratification on rare variant association test results. PLoS ONE 13, e0207677 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouaziz, M. et al. Controlling for human population stratification in rare variant association studies. Sci. Rep. 11, 19015 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, A. et al. The nature of nurture: effects of parental genotypes. Science 359, 424–428 (2018). This paper was the first to demonstrate indirect genetic effects using molecular genetic data in very large samples of trios.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Demange, P. A. et al. Estimating effects of parents’ cognitive and non-cognitive skills on offspring education using polygenic scores. Nat. Commun. 13, 4801 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, B. et al. Robust genetic nurture effects on education: A systematic review and meta-analysis based on 38,654 families across 8 cohorts. Am. J. Hum. Genet. 108, 1780–1791 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, A. I. et al. Relatedness disequilibrium regression estimates heritability without environmental bias. Nat. Genet. 50, 1304–1310 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, A. I., Benonisdottir, S., Przeworski, M. & Kong, A. Deconstructing the sources of genotype-phenotype associations in humans. Science 365, 1396–1400 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, N. M. et al. Within family Mendelian randomization studies. Hum. Mol. Genet. 28, R170–R179 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Border, R. et al. Assortative mating biases marker-based heritability estimators. Nat. Commun. 13, 660 (2022). This paper reports the extent of cross-trait assortative mating and its implications for misinterpretations of genetic correlations.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimate. Science 378, 754–761 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnus, P. et al. Cohort profile update: The Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Tapia-Conyer, R. et al. Cohort profile: The Mexico City Prospective Study. Int. J. Epidemiol. 35, 243–249 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Sijtsma, A. et al. Cohort profile update: Lifelines, a three-generation cohort study and biobank. Int. J. Epidemiol. 51, e295–e302 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Van Der Laan, J., De Jonge, E., Das, M., Te Riele, S. & Emery, T. A whole population network and its application for the social sciences. Eur. Sociol. Rev. 39, 145–160 (2023).

    Article 

    Google Scholar
     

  • Liu, A. et al. Evidence from Finland and Sweden on the relationship between early-life diseases and lifetime childlessness in men and women. Nat. Hum. Behav. 8, 276–287 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allesøe, R. L. et al. Deep learning for cross-diagnostic prediction of mental disorder diagnosis and prognosis using Danish nationwide register and genetic data. JAMA Psychiatry 80, 146 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Boyd, A. et al. Cohort profile: The ‘Children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Power, C., Kuh, D. & Morton, S. From developmental origins of adult disease to life course research on adult disease and aging: insights from birth cohort studies. Annu. Rev. Public Health 34, 7–28 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Larmuseau, M. H. D. et al. Low historical rates of cuckoldry in a Western European human population traced by Y-chromosome and genealogical data. Proc. R. Soc. B Biol. Sci. 280, 20132400 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Around 7,000 children born each year in England and Wales likely to experience the death of their mother. Office for National Statistics https://www.ons.gov.uk/news/news/around7000childrenborneachyearinenglandandwaleslikelytoexperiencethedeathoftheirmother (2019).

  • Tomkins, S. in Family Matters: Designing, Analysing and Understanding Family Based Studies in Life Course Epidemiology (eds Lawlor, D. A. & Mishra, G. D.) Ch. 8, 129–150 (Oxford Univ. Press, 2009).

  • Berthoud, R., Fumagalli, L., Lynn, P. & Platt, L. Design of the Understanding Society Ethnic Minority Boost Sample.Working Paper No. 2009-02 (Institute for Social and Economic Research, University of Essex, 2009).

  • Schreuder, P. & Alsaker, E. The Norwegian Mother and Child Cohort Study (MoBa) – MoBa recruitment and logistics. Nor. Epidemiol. 24, 23–27 (2014).


    Google Scholar
     

  • Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lawlor, D. A. & Leon, D. A. in Family Matters: Designing, Analysing and Understanding Family Based Studies in Life Course Epidemiology (eds Lawlor, D. A. & Mishra, G. D.) Ch. 13, 263–278 (Oxford Univ. Press, 2009).

  • Davies, N. M., Holmes, M. V. & Smith, G. D. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. Brit. Med. J. 362, k601 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brumpton, B. et al. Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nat. Commun. 11, 3519 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howe, L. J. et al. Educational attainment, health outcomes and mortality: a within-sibship Mendelian randomization study. Int. J. Epidemiol. 52, 1579–1591 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kendler, K. S., Gardner, C. O. & Lichtenstein, P. A developmental twin study of symptoms of anxiety and depression: evidence for genetic innovation and attenuation. Psychol. Med. 38, 1567–1575 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ott, J., Kamatani, Y. & Lathrop, M. Family-based designs for genome-wide association studies. Nat. Rev. Genet. 12, 465–474 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, A. I. Solving the missing heritability problem. PLoS Genet. 15, 1008222 (2019).

    Article 

    Google Scholar
     

  • Visscher, P. M. et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2, e41 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kemper, K. E. et al. Phenotypic covariance across the entire spectrum of relatedness for 86 billion pairs of individuals. Nat. Commun. 12, 1050 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balbona, J. V., Kim, Y. & Keller, M. C. Estimation of parental effects using polygenic scores. Behav. Genet. 51, 264–278 (2021). This paper described how samples of related individuals with molecular genetic data can be used to estimate parental effects while controlling for assortative mating.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawson, H. A., Cheverud, J. M. & Wolf, J. B. Genomic imprinting and parent-of-origin effects on complex traits. Nat. Rev. Genet. 14, 609–617 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. R. et al. Genetic evidence of assortative mating in humans. Nat. Hum. Behav. 1, 0016 (2017).

    Article 

    Google Scholar
     

  • Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, A. et al. Fine-scale recombination rate differences between sexes, populations and individuals. Nature 467, 1099–1103 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasani, T. A. et al. Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. eLife 8, e46922 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jónsson, H. et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Sci. Data 4, 170115 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaplanis, J. et al. Genetic and chemotherapeutic influences on germline hypermutation. Nature 605, 503–508 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genomics England Research Consortium. Heritability of de novo germline mutation reveals a contribution from paternal but not maternal genetic factors. Preprint at bioRxiv https://doi.org/10.1101/2022.12.17.520885 (2022).

  • Stankovic, S. et al. Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature 633, 608–614 (2014).

  • RELATED ARTICLES

    Most Popular

    Recent Comments