Rieger, D., Stanewsky, R. & Helfrich-Forster, C. Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms 18, 377â391 (2003).
Auer, T. O., Shahandeh, M. P. & Benton, R. Drosophila sechellia: a genetic model for behavioral evolution and neuroecology. Annu. Rev. Genet. 55, 527â554 (2021).
Roca, I. T. et al. Shifting song frequencies in response to anthropogenic noise: a meta-analysis on birds and anurans. Behav. Ecol. 27, 1269â1274 (2016).
Caldwell, A. J., While, G. M. & Wapstra, E. Plasticity of thermoregulatory behaviour in response to the thermal environment by widespread and alpine reptile species. Anim. Behav. 132, 217â227 (2017).
Muraro, N. I., Pirez, N. & Ceriani, M. F. The circadian system: plasticity at many levels. Neuroscience 247, 280â293 (2013).
Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411â415 (2021).
Horn, M. et al. The circadian clock improves fitness in the fruit fly, Drosophila melanogaster. Front. Physiol. 10, 1374 (2019).
Hardeland, R. & Stange, G. Comparative studies on the circadian rhythms of locomotor activity of 40 Drosophila species. J. Interdiscipl. Cycle Res. 4, 353â359 (1973).
Rieger, D., Peschel, N., Dusik, V., Glotz, S. & Helfrich-Forster, C. The ability to entrain to long photoperiods differs between 3 Drosophila melanogaster wild-type strains and is modified by twilight simulation. J. Biol. Rhythms 27, 37â47 (2012).
Beauchamp, M. et al. Closely related fruit fly species living at different latitudes diverge in their circadian clock anatomy and rhythmic behavior. J. Biol. Rhythms 33, 602â613 (2018).
Bywalez, W. et al. The dual-oscillator system of Drosophila melanogaster under natural-like temperature cycles. Chronobiol. Int. 29, 395â407 (2012).
Matute, D. R., Gavin-Smyth, J. & Liu, G. Variable post-zygotic isolation in Drosophila melanogaster/D. simulans hybrids. J. Evol. Biol. 27, 1691â1705 (2014).
Lachaise, D. et al. in Historical Biogeography of the Drosophila melanogaster Species Subgroup (eds. Hecht, M. K., Wallace, B. & Prance, G. T.) 159â225 (Plenum, 1988).
Dean, M. D. & Ballard, J. W. Linking phylogenetics with population genetics to reconstruct the geographic origin of a species. Mol. Phylogenet. Evol. 32, 998â1009 (2004).
Hardin, P. E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 74, 141â173 (2011).
Hermann-Luibl, C. & Helfrich-Forster, C. Clock network in Drosophila. Curr. Opin. Insect Sci. 7, 65â70 (2015).
Vaze, K. M. & Helfrich-Forster, C. The neuropeptide PDF is crucial for delaying the phase of Drosophilaâs evening neurons under long Zeitgeber periods. J. Biol. Rhythms 36, 442â460 (2021).
Yoshii, T. et al. The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophilaâs clock. J. Neurosci. 29, 2597â2610 (2009).
Schlichting, M. et al. A neural network underlying circadian entrainment and photoperiodic adjustment of sleep and activity in Drosophila. J. Neurosci. 36, 9084â9096 (2016).
Peschel, N., Chen, K. F., Szabo, G. & Stanewsky, R. Light-dependent interactions between the Drosophila circadian clock factors Cryptochrome, Jetlag, and Timeless. Curr. Biol. 19, 241â247 (2009).
Gunawardhana, K. L. & Hardin, P. E. VRILLE controls PDF neuropeptide accumulation and arborization rhythms in small ventrolateral neurons to drive rhythmic behavior in Drosophila. Curr. Biol. 27, 3442â3453 (2017).
Mezan, S., Feuz, J. D., Deplancke, B. & Kadener, S. PDF signaling is an integral part of the Drosophila circadian molecular oscillator. Cell. Rep. 17, 708â719 (2016).
Grima, B., Chelot, E., Xia, R. & Rouyer, F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869â873 (2004).
Delventhal, R. et al. Dissection of central clock function in Drosophila through cell-specific CRISPR-mediated clock gene disruption. eLife 8, e48308 (2019).
Stoleru, D., Peng, Y., Agosto, J. & Rosbash, M. Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431, 862â868 (2004).
Sheeba, V., Gu, H., Sharma, V. K., OâDowd, D. K. & Holmes, T. C. Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J. Neurophysiol. 99, 976â988 (2008).
Menegazzi, P. et al. A functional clock within the main morning and evening neurons of D. melanogaster is not sufficient for wild-type locomotor activity under changing day length. Front. Physiol. 11, 229 (2020).
Hermann, C. et al. The circadian clock network in the brain of different Drosophila species. J. Comp. Neurol. 521, 367â388 (2013).
Park, J. H. et al. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl Acad. Sci. USA 97, 3608â3613 (2000).
Fernandez, M. P., Berni, J. & Ceriani, M. F. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol. 6, e69 (2008).
Herrero, A. et al. Coupling neuropeptide levels to structural plasticity in Drosophila clock neurons. Curr. Biol. 30, 3154â3166 (2020).
Zhang, L. et al. DN1(p) circadian neurons coordinate acute light and PDF inputs to produce robust daily behavior in Drosophila. Curr. Biol. 20, 591â599 (2010).
Liang, X., Holy, T. E. & Taghert, P. H. A series of suppressive signals within the Drosophila circadian neural circuit generates sequential daily outputs. Neuron 94, 1173â1189 (2017).
Ryczek, N., Lys, A. & Makalowska, I. The functional meaning of 5âUTR in protein-coding genes. Int. J. Mol. Sci. 24, 2976 (2023).
Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28â36 (1994).
Bergland, A. O., Tobler, R., Gonzalez, J., Schmidt, P. & Petrov, D. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster. Mol. Ecol. 25, 1157â1174 (2016).
Arguello, J. R., Laurent, S. & Clark, A. G. Demographic history of the human commensal Drosophila melanogaster. Genome Biol. Evol. 11, 844â854 (2019).
Khatib, L., Subasi, B. S., Fishman, B., Kapun, M. & Tauber, E. Unveiling subtle geographical clines: phenotypic effects and dynamics of circadian clock gene polymorphisms. Biology 12, 858 (2023).
Lamaze, A. et al. A natural timeless polymorphism allowing circadian clock synchronization in âwhite nightsâ. Nat. Commun. 13, 1724 (2022).
Tauber, E. et al. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316, 1895â1898 (2007).
Deppisch, P. et al. Adaptation of Drosophila melanogaster to long photoperiods of high-latitude summers is facilitated by the ls-timeless allele. J. Biol. Rhythms 37, 185â201 (2022).
Schrider, D. R., Ayroles, J., Matute, D. R. & Kern, A. D. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia. PLoS Genet. 14, e1007341 (2018).
Li, J. C. & Xu, F. Influences of light-dark shifting on the immune system, tumor growth and life span of rats, mice and fruit flies as well as on the counteraction of melatonin. Biol. Signals 6, 77â89 (1997).
Emerson, K. J., Bradshaw, W. E. & Holzapfel, C. M. Concordance of the circadian clock with the environment is necessary to maximize fitness in natural populations. Evolution 62, 979â983 (2008).
Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788â793 (2020).
Menegazzi, P. et al. Adaptation of circadian neuronal network to photoperiod in high-latitude European drosophilids. Curr. Biol. 27, 833â839 (2017).
Shafer, O. T. et al. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58, 223â237 (2008).
York, R. A. Assessing the genetic landscape of animal behavior. Genetics 209, 223â232 (2018).
Ding, K. et al. Imaging neuropeptide release at synapses with a genetically engineered reporter. eLife 8, e46421 (2019).
Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791â802 (1999).
Duhart, J. M. et al. Circadian structural plasticity drives remodeling of E cell output. Curr. Biol. 30, 5040â5048 (2020).
Shahandeh, M. P., Pischedda, A. & Turner, T. L. Male mate choice via cuticular hydrocarbon pheromones drives reproductive isolation between Drosophila species. Evolution 72, 123â135 (2018).
Razafimandimbison, S. G., McDowell, T. D., Halford, D. A. & Bremer, B. Origin of the pantropical and nutriceutical Morinda citrifolia L. (Rubiaceae): comments on its distribution range and circumscription. J. Biogeogr. 37, 520â529 (2010).
Cook, R. K. et al. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome. Genome Biol. 13, R21 (2012).
Shahandeh, M. P. & Turner, T. L. The complex genetic architecture of male mate choice evolution between Drosophila species. Heredity (Edinb.) 124, 737â750 (2020).
Zhou, J., Yu, W. & Hardin, P. E. CLOCKWORK ORANGE enhances PERIOD mediated rhythms in transcriptional repression by antagonizing E-box binding by CLOCK-CYCLE. PLoS Genet. 12, e1006430 (2016).
Chiu, J. C., Low, K. H., Pike, D. H., Yildirim, E. & Edery, I. Assaying locomotor activity to study circadian rhythms and sleep parameters in Drosophila. J. Vis. Exp. 43, 2157 (2010).
Geissmann, Q., Garcia Rodriguez, L., Beckwith, E. J. & Gilestro, G. F. Rethomics: an R framework to analyse high-throughput behavioural data. PLoS ONE 14, e0209331 (2019).
Long, X., Colonell, J., Wong, A. M., Singer, R. H. & Lionnet, T. Quantitative mRNA imaging throughout the entire Drosophila brain. Nat. Methods 14, 703â706 (2017).
Yuan, Y., Padilla, M. A., Clark, D. & Yadlapalli, S. Streamlined single-molecule RNA-FISH of core clock mRNAs in clock neurons in whole mount Drosophila brains. Front. Physiol. 13, 1051544 (2022).
Bahry, E. et al. RS-FISH: precise, interactive, fast, and scalable FISH spot detection. Nat. Methods 19, 1563â1567 (2022).
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65â70 (1979).
Ostrovsky, A., Cachero, S. & Jefferis, G. Clonal analysis of olfaction in Drosophila: immunochemistry and imaging of fly brains. Cold Spring Harb. Protoc. 2013, 342â346 (2013).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676â682 (2012).
Ferreira, T. A. et al. Neuronal morphometry directly from bitmap images. Nat. Methods 11, 982â984 (2014).
Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312â3317 (2007).
Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 40, 476â483 (2008).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792â1797 (2004).
Procter, J. B. et al. Alignment of biological sequences with Jalview. Methods Mol. Biol. 2231, 203â224 (2021).
Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592â593 (2011).
Therneau, T. M. & Grambsch, P. M. Modelling Survival Data: Extending the Cox Model (Springer, 2000).
Jezovit, J. A., Alwash, N. & Levine, J. D. Using flies to understand social networks. Front. Neural Circuits 15, 755093 (2021).
Dukas, R. Natural history of social and sexual behavior in fruit flies. Sci. Rep. 10, 21932 (2020).
Shahandeh, M. Data from: circadian plasticity evolves through regulatory changes in a neuropeptide gene. Dryad https://doi.org/10.5061/dryad.vq83bk42z (2024).
Bergland, A. O. et al. Data from: secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster. Dryad https://doi.org/10.5061/dryad.7440s (2015).