Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306â312 (2019).
Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360â364 (2018).
Xu, T. et al. An increase in marine heatwaves without significant changes in surface ocean temperature variability. Nat. Commun. 13, 7396 (2022).
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
Welch, H. et al. Impacts of marine heatwaves on top predator distributions are variable but predictable. Nat. Commun. 14, 5188 (2023).
Jacox, M. G. et al. Global seasonal forecasts of marine heatwaves. Nature 604, 486â490 (2022).
Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).
Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482â493 (2020).
Martin, A. et al. The oceansâ twilight zone must be studied now, before it is too late. Nature 580, 26â28 (2020).
Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Filbee-Dexter, K. & Oliver, E. C. J. Marine cold-spells. Prog. Oceanogr. 198, 102684 (2021).
Guo, X. et al. Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nat. Clim. Change 12, 179â186 (2022).
Hobday, A. J. et al. With the arrival of El Niño, prepare for stronger marine heatwaves. Nature 621, 38â41 (2023).
Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119â2137 (2021).
Cornec, M. et al. Deep chlorophyll maxima in the global ocean: occurrences, drivers and characteristics. Global Biogeochem. Cycles 35, e2020GB006759 (2021).
Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313â342 (2021).
Hu, S. et al. Observed strong subsurface marine heatwaves in the tropical western Pacific Ocean. Environ. Res. Lett. 16, 104024 (2021).
Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).
Sun, D., Li, F., Jing, Z., Hu, S. & Zhang, B. Frequent marine heatwaves hidden below the surface of the global ocean. Nat. Geosci. 16, 1099â1104 (2023).
Gruber, N., Boyd, P. W., Frolicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395â407 (2021).
Bian, C., Jing, Z., Wang, H. & Wu, L. Scaleâdependent drivers of marine heatwaves globally. Geophys. Res. Lett. 51, e2023GL107306 (2024).
Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359 (2020).
Ren, X., Liu, W., Capotondi, A., Amaya, D. J. & Holbrook, N. J. The Pacific Decadal Oscillation modulated marine heatwaves in the northeast Pacific during past decades. Commun. Earth Environ. 4, 218 (2023).
Schaeffer, A., Sen Gupta, A. & Roughan, M. Seasonal stratification and complex local dynamics control the sub-surface structure of marine heatwaves in eastern Australian coastal waters. Commun. Earth Environ. 4, 304 (2023).
Chelton, D. B., Schlax, M. G. & Samelson, R. M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167â216 (2011).
Frenger, I., Münnich, M., Gruber, N. & Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans 120, 7413â7449 (2015).
Beech, N. et al. Long-term evolution of ocean eddy activity in a warming world. Nat. Clim. Change 12, 910â917 (2022).
Wang, H., Qiu, B., Liu, H. & Zhang, Z. Doubling of surface oceanic meridional heat transport by non-symmetry of mesoscale eddies. Nat. Commun. 14, 5460 (2023).
He, Q., Zhan, H. & Cai, S. Anticyclonic eddies enhance the winter barrier layer and surface cooling in the Bay of Bengal. J. Geophys. Res. Oceans 125, e2020JC016524 (2020).
Villas Bôas, A. B., Sato, O. T., Chaigneau, A. & Castelão, G. P. The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett. 42, 1856â1862 (2015).
McGillicuddy, D. et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263â266 (1998).
Zhang, Z. et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep. 6, 24349 (2016).
He, Q. et al. Enhancing impacts of mesoscale eddies on Southern Ocean temperature variability and extremes. Proc. Natl Acad. Sci. USA 120, e2302292120 (2023).
Wyatt, A. S. J. et al. Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics. Nat. Commun. 14, 25 (2023).
Bian, C. et al. Oceanic mesoscale eddies as crucial drivers of global marine heatwaves. Nat. Commun. 14, 2970 (2023).
Fragkopoulou, E. et al. Marine biodiversity exposed to prolonged and intense subsurface heatwaves. Nat. Clim. Change 13, 1114â1121 (2023).
Nakano, H., Tsujino, H. & Sakamoto, K. Tracer transport in cold-core rings pinched off from the Kuroshio Extension in an eddy-resolving ocean general circulation model. J. Geophys. Res. Oceans 118, 5461â5488 (2013).
MartÃnez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Change 11, 397â403 (2021).
Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116â1123 (2020).
Johnson, G. C. & Lyman, J. M. Warming trends increasingly dominate global ocean. Nat. Clim. Change 10, 757â761 (2020).
Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128â129 (2019).
Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240â245 (2015).
He, Q. et al. Thermal imprints of mesoscale eddies in the global ocean. J. Phys. Oceanogr. 54, 1991â2009 (2024).
Zhang, Z., Wang, W. & Qiu, B. Oceanic mass transport by mesoscale eddies. Science 345, 322â324 (2014).
Zhang, Y., Du, Y., Feng, M. & Hobday, A. J. Vertical structures of marine heatwaves. Nat. Commun. 14, 6483 (2023).
Elzahaby, Y. & Schaeffer, A. Observational insight into the subsurface anomalies of marine heatwaves. Front. Mar. Sci. 6, 745 (2019).
Le Grix, N., Zscheischler, J., Rodgers, K. B., Yamaguchi, R. & Frölicher, T. L. Hotspots and drivers of compound marine heatwaves and low net primary production extremes. Biogeosciences 19, 5807â5835 (2022).
Burger, F. A., Terhaar, J. & Frolicher, T. L. Compound marine heatwaves and ocean acidity extremes. Nat. Commun. 13, 4722 (2022).
Benitez-Nelson, C. R. et al. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316, 1017â1021 (2007).
Atkins, J., Andrews, O. & Frenger, I. Quantifying the contribution of ocean mesoscale eddies to low oxygen extreme events. Geophys. Res. Lett. 49, e2022GL098672 (2022).
Boyer, T. P. et al. NCEI standard product: World Ocean Database (WOD) (NOAA National Centers for Environmental Information dataset, accessed 21 October 2021); www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-WOD
Pegliasco, C. et al. META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry. Earth Syst. Sci. Data 14, 1087â1107 (2022).
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227â238 (2016).
Gupta, H., Sil, S., Gangopadhyay, A. & Gawarkiewicz, G. Observed surface and subsurface marine heat waves in the Bay of Bengal from in-situ and high-resolution satellite data. Clim. Dyn. 62, 203â221 (2023).
Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836â841 (2018).
He, Q. et al. A new assessment of mesoscale eddies in the South China Sea: surface features, three-dimensional structures and thermohaline transports. J. Geophys. Res. Oceans 123, 4906â4929 (2018).
Zhao, Z. & Marin, M. A MATLAB toolbox to detect and analyze marine heatwaves. J. Open Source Softw. 4, 1124 (2019).
He, Q. Codes and source data for âCommon occurrences of subsurface heatwaves and cold-spells in ocean eddiesâ. Zenodo https://doi.org/10.5281/zenodo.13235274 (2024).