Gottfried, J. A. Central mechanisms of odour object perception. Nat. Rev. Neurosci. 11, 628â641 (2010).
McGann, J. P. Poor human olfaction is a 19th-century myth. Science 356, eaam7263 (2017).
Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175â187 (1991).
Murthy, V. N. Olfactory maps in the brain. Annu. Rev. Neurosci. 34, 233â258 (2011).
Wilson, D. A., Chapuis, J. & Sullivan, R. M. in Handbook of Olfaction and Gustation Ch. 10 (ed. Doty, R.) 209â224 (John Wiley & Sons, 2015); https://doi.org/10.1002/9781118971758.ch10.
Gretenkord, S. et al. Coordinated electrical activity in the olfactory bulb gates the oscillatory entrainment of entorhinal networks in neonatal mice. PLOS Biol. 17, e2006994 (2019).
Sosulski, D. L., Bloom, M. L., Cutforth, T., Axel, R. & Datta, S. R. Distinct representations of olfactory information in different cortical centres. Nature 472, 213â216 (2011).
Echevarria-Cooper, S. L. et al. Mapping the microstructure and striae of the human olfactory tract with diffusion MRI. J. Neurosci. 42, 58â68 (2022).
Bekkers, J. M. & Suzuki, N. Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci. 36, 429â438 (2013).
Stettler, D. D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854â864 (2009).
Howard, J. D., Plailly, J., Grueschow, M., Haynes, J.-D. & Gottfried, J. A. Odor quality coding and categorization in human posterior piriform cortex. Nat. Neurosci. 12, 932â938 (2009).
Gottfried, J. A., Winston, J. S. & Dolan, R. J. Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49, 467â479 (2006).
Poellinger, A. et al. Activation and habituation in olfactionâan fMRI study. NeuroImage 13, 547â560 (2001).
Jiang, H. et al. Theta oscillations rapidly convey odor-specific content in human piriform cortex. Neuron 94, 207â219 (2017).
Poo, C., Agarwal, G., Bonacchi, N. & Mainen, Z. F. Spatial maps in piriform cortex during olfactory navigation. Nature 601, 595â599 (2022).
Poo, C. & Isaacson, J. S. Odor representations in olfactory cortex: âsparseâ coding, global inhibition, and oscillations. Neuron 62, 850â861 (2009).
Zhan, C. & Luo, M. Diverse patterns of odor representation by neurons in the anterior piriform cortex of awake mice. J. Neurosci. 30, 16662â16672 (2010).
Roland, B., Deneux, T., Franks, K. M., Bathellier, B. & Fleischmann, A. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. eLife 6, e26337 (2017).
Blazing, R. M. & Franks, K. M. Odor coding in piriform cortex: mechanistic insights into distributed coding. Curr. Opin. Neurobiol. 64, 96â102 (2020).
Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature 583, 253â258 (2020).
Haddad, R. et al. Olfactory cortical neurons read out a relative time code in the olfactory bulb. Nat. Neurosci. 16, 949â957 (2013).
Xu, W. & Wilson, D. A. Odor-evoked activity in the mouse lateral entorhinal cortex. Neuroscience 223, 12â20 (2012).
Cain, D. P. & Bindra, D. Responses of amygdala single units to odors in the rat. Exp. Neurol. 35, 98â110 (1972).
Kupers, R. et al. Neural correlates of olfactory processing in congenital blindness. Neuropsychologia 49, 2037â2044 (2011).
Kjelvik, G., Evensmoen, H. R., Brezova, V. & HÃ¥berg, A. K. The human brain representation of odor identification. J. Neurophysiol. 108, 645â657 (2012).
Bitterman, Y., Mukamel, R., Malach, R., Fried, I. & Nelken, I. Ultra-fine frequency tuning revealed in single neurons of human auditory cortex. Nature 451, 197â201 (2008).
Reber, T. P. et al. Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLOS Biol. 17, e3000290 (2019).
Rutishauser, U., Reddy, L., Mormann, F. & Sarnthein, J. The architecture of human memory: insights from human single-neuron recordings. J. Neurosci. 41, 883â890 (2021).
Halgren, E., Babb, T. L., Rausch, R. & Crandall, P. H. Neurons in the human basolateral amygdala and hippocampal formation do not respond to odors. Neurosci. Lett. 4, 331â335 (1977).
Fontanini, A., Spano, P. & Bower, J. M. Ketamine-xylazine-induced slow (<1.5âHz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J. Neurosci. 23, 7993â8001 (2003).
Sobel, N. et al. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392, 282â286 (1998).
Zelano, C. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36, 12448â12467 (2016).
Meyers, E. The neural decoding toolbox. Front. Neuroinformatics 7, 8 (2013).
Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273â1276 (2000).
Pedreira, C., Martinez, J., Ison, M. J. & Quian Quiroga, R. How many neurons can we see with current spike sorting algorithms? J. Neurosci. Methods 211, 58â65 (2012).
Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J. & Barrett, L. F. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex 26, 1910â1922 (2016).
Winston, J. S., Gottfried, J. A., Kilner, J. M. & Dolan, R. J. Integrated neural representations of odor intensity and affective valence in human amygdala. J. Neurosci. 25, 8903â8907 (2005).
Pignatelli, M. & Beyeler, A. Valence coding in amygdala circuits. Curr. Opin. Behav. Sci. 26, 97â106 (2019).
Toet, A. et al. The relation between valence and arousal in subjective odor experience. Chemosens. Percept. 13, 141â151 (2020).
Eichenbaum, H., Morton, T. H., Potter, H. & Corkin, S. Selective olfactory deficits in case H.M. Brain 106, 459â472 (1983).
Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102â1107 (2005).
Quiroga, R. Q., Kraskov, A., Koch, C. & Fried, I. Explicit encoding of multimodal percepts by single neurons in the human brain. Curr. Biol. 19, 1308â1313 (2009).
Mignot, C., Schunke, A., Sinding, C. & Hummel, T. Olfactory adaptation: recordings from the human olfactory epithelium. Eur. Arch. Otorhinolaryngol. 279, 3503â3510 (2022).
Wilson, D. A. Habituation of odor responses in the rat anterior piriform cortex. J. Neurophysiol. 79, 1425â1440 (1998).
Sobel, N. et al. Time course of odorant-induced activation in the human primary olfactory cortex. J. Neurophysiol. 83, 537â551 (2000).
Pedreira, C. et al. Responses of human medial temporal lobe neurons are modulated by stimulus repetition. J. Neurophysiol. 103, 97â107 (2010).
Jacobson, G. A., Rupprecht, P. & Friedrich, R. W. Experience-dependent plasticity of odor representations in the telencephalon of zebrafish. Curr. Biol. 28, 1â14 (2018).
Franks, K. M. et al. Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72, 49â56 (2011).
Iravani, B., Arshamian, A., Ohla, K., Wilson, D. A. & Lundström, J. N. Non-invasive recording from the human olfactory bulb. Nat. Commun. 11, 648 (2020).
Garavan, H., Pendergrass, J. C., Ross, T. J., Stein, E. A. & Risinger, R. C. Amygdala response to both positively and negatively valenced stimuli. NeuroReport 12, 2779 (2001).
Jin, J., Zelano, C., Gottfried, J. A. & Mohanty, A. Human amygdala represents the complete spectrum of subjective valence. J. Neurosci. 35, 15145â15156 (2015).
Anderson, A. K. et al. Dissociated neural representations of intensity and valence in human olfaction. Nat. Neurosci. 6, 196â202 (2003).
Doty, R. L. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol. 16, 478â488 (2017).
Poo, C. & Isaacson, J. S. A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 72, 41â48 (2011).
Mandairon, N. et al. Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex. Front. Behav. Neurosci. 8, 138 (2014).
Schulze, P., Bestgen, A.-K., Lech, R. K., Kuchinke, L. & Suchan, B. Preprocessing of emotional visual information in the human piriform cortex. Sci. Rep. 7, 9191 (2017).
Djordjevic, J. et al. A rose by any other name: would it smell as sweet? J. Neurophysiol. 99, 386â393 (2008).
Bensafi, M. et al. Olfactomotor activity during imagery mimics that during perception. Nat. Neurosci. 6, 1142â1144 (2003).
Herz, R. S. Verbal coding in olfactory versus nonolfactory cognition. Mem. Cognit. 28, 957â964 (2000).
Young, B. D. Olfactory imagery: is exactly what it smells like. Philos. Stud. 177, 3303â3327 (2020).
Topalovic, U. et al. A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat. Neurosci. 26, 517â527 (2023).
Tay, A. S.-M. S., Caravan, B. & Mamelak, A. N. in Intracranial EEG: A Guide for Cognitive Neuroscientists (ed. Axmacher, N.) 671â682 (Springer, 2023); https://doi.org/10.1007/978-3-031-20910-9_42.
Niediek, J., Boström, J., Elger, C. E. & Mormann, F. Reliable analysis of single-unit recordings from the human brain under noisy conditions: tracking neurons over hours. PLoS ONE 11, e0166598 (2016).
Dehnen, G. et al. Duplicate detection of spike events: a relevant problem in human single-unit recordings. Brain Sci. 11, 761 (2021).
Davis, T. S. et al. LeGUI: a fast and accurate graphical user interface for automated detection and anatomical localization of intracranial electrodes. Front. Neurosci. 15, 769872 (2021).
Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).
Noto, T., Zhou, G., Schuele, S., Templer, J. & Zelano, C. Automated analysis of breathing waveforms using BreathMetrics: a respiratory signal processing toolbox. Chem. Senses 43, 583â597 (2018).
Tiihonen, M., Jacobsen, T., Haumann, N. T., Saarikallio, S. & Brattico, E. I know what I like when I see it: likability is distinct from pleasantness since early stages of multimodal emotion evaluation. PLoS ONE 17, e0274556 (2022).
Shuman, V., Sander, D. & Scherer, K. Levels of Valence. Front. Psychol. 4, (2013).
Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433â436 (1997).
Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437â442 (1997).
Kleiner, M. et al. Whatâs new in psychtoolbox-3. Perception 36, 1â16 (2007).
Mormann, F. et al. Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J. Neurosci. 28, 8865â8872 (2008).
Reber, T. P. et al. Single-neuron mechanisms of neural adaptation in the human temporal lobe. Nat. Commun. 14, 2496 (2023).
Rolls, E. T. & Tovee, M. J. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J. Neurophysiol. 73, 713â726 (1995).
Treves, A. & Rolls, E. T. What determines the capacity of autoassociative memories in the brain? Netw. Comput. Neural Syst. 2, 371â397 (1991).
Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491â496 (2014).
Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255â278 (2013).