Thursday, October 10, 2024
No menu items!
HomeNatureTwo waves of massive stars running away from the young cluster R136

Two waves of massive stars running away from the young cluster R136

  • de Wit, W. J., Testi, L., Palla, F. & Zinnecker, H. The origin of massive O-type field stars. II. Field O stars as runaways. Astron. Astrophys. 437, 247–255 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Fujii, M. S. & Portegies Zwart, S. The origin of OB runaway stars. Science 334, 1380–1383 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article 

    Google Scholar
     

  • Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article 

    Google Scholar
     

  • Gaia Collaboration et al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

  • Banerjee, S., Kroupa, P. & Oh, S. Runaway massive stars from R136: VFTS 682 is very likely a ‘slow runaway’. Astrophys. J. 746, 15 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Oh, S., Kroupa, P. & Pflamm-Altenburg, J. Dependency of dynamical ejections of O stars on the masses of very young star clusters. Astrophys. J. 805, 92 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Andersson, E. P., Agertz, O. & Renaud, F. How runaway stars boost galactic outflows. Mon. Not. R. Astron. Soc. 494, 3328–3341 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Steinwandel, U. P., Bryan, G. L., Somerville, R. S., Hayward, C. C. & Burkhart, B. On the impact of runaway stars on dwarf galaxies with resolved interstellar medium. Mon. Not. R. Astron. Soc. 526, 1408–1427 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schneider, F. R. N. et al. An excess of massive stars in the local 30 Doradus starburst. Science 359, 69–71 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, C. J. et al. A massive runaway star from 30 Doradus. Astrophys. J. Lett. 715, 74–79 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lennon, D. J. et al. Gaia DR2 reveals a very massive runaway star ejected from R136. Astron. Astrophys. 619, A78 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sana, H. et al. The VLT-FLAMES Tarantula survey. Observational evidence for two distinct populations of massive runaway stars in 30 Doradus. Astron. Astrophys. 668, L5 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Oh, S. & Kroupa, P. Dynamical ejections of massive stars from young star clusters under diverse initial conditions. Astron. Astrophys. 590, A107 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Maíz Apellániz, J., Pantaleoni González, M., Barbá, R. H. & Weiler, M. Escape from the Bermuda cluster: orphanization by multiple stellar ejections. Astron. Astrophys. 657, A72 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Stoop, M. et al. The early evolution of young massive clusters. II. The kinematic history of NGC 6618/M 17. Astron. Astrophys. 681, A21 (2024).

    Article 

    Google Scholar
     

  • Brands, S. A. et al. The R136 star cluster dissected with Hubble Space Telescope/STIS. III. The most massive stars and their clumped winds. Astron. Astrophys. 663, A36 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Crowther, P. A. et al. The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msolar stellar mass limit. Mon. Not. R. Astron. Soc. 408, 731–751 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Bestenlehner, J. M. et al. The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. Mon. Not. R. Astron. Soc. 499, 1918–1936 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sabbi, E. et al. A double cluster at the core of 30 Doradus. Astrophys. J. Lett. 754, L37 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bestenlehner, J. M. et al. The VLT-FLAMES Tarantula survey. XVII. Physical and wind properties of massive stars at the top of the main sequence. Astron. Astrophys. 570, A38 (2014).

    Article 

    Google Scholar
     

  • Crowther, P. A. et al. The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters. Mon. Not. R. Astron. Soc. 458, 624–659 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ramírez-Tannus, M. C. et al. A relation between the radial velocity dispersion of young clusters and their age. Evidence for hardening as the formation scenario of massive close binaries. Astron. Astrophys. 645, L10 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Doran, E. I. et al. The VLT-FLAMES Tarantula survey. XI. A census of the hot luminous stars and their feedback in 30 Doradus. Astron. Astrophys. 558, A134 (2013).

    Article 

    Google Scholar
     

  • Barkana, R. & Loeb, A. In the beginning: the first sources of light and the reionization of the Universe. Phys. Rep. 349, 125–238 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wise, J. H. & Cen, R. Ionizing photon escape fractions from high-redshift dwarf galaxies. Astrophys. J. 693, 984–999 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Atek, H. et al. Most of the photons that reionized the Universe came from dwarf galaxies. Nature 626, 975–978 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Razoumov, A. O. & Sommer-Larsen, J. Modeling Lyman continuum emission from young galaxies. Astrophys. J. 668, 674–681 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conroy, C. & Kratter, K. M. Runaway stars and the escape of ionizing radiation from high-redshift galaxies. Astrophys. J. 755, 123 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lindegren, L. et al. Gaia Early Data Release 3. Parallax bias versus magnitude, colour, and position. Astron. Astrophys. 649, A4 (2021).

    Article 

    Google Scholar
     

  • Lindegren, L. Re-normalising the astrometric chi-square in Gaia DR2. Report No. GAIA-C3-TN-LU-LL-124 (Gaia Collaboration, Semantic Scholar, 2018).

  • Pecaut, M. J. & Mamajek, E. E. Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. Astrophys. J. Suppl. Ser. 208, 9 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hénault-Brunet, V. et al. The VLT-FLAMES Tarantula survey. VII. A low velocity dispersion for the young massive cluster R136. Astron. Astrophys. 546, A73 (2012).

    Article 

    Google Scholar
     

  • Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Bestenlehner, J. M. et al. The VLT-FLAMES Tarantula Survey. III. A very massive star in apparent isolation from the massive cluster R136. Astron. Astrophys. 530, L14 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Renzo, M. et al. Space astrometry of the very massive ~150 M⊙ candidate runaway star VFTS682. Mon. Not. R. Astron. Soc. 482, 102–106 (2019).

    Article 

    Google Scholar
     

  • Brands, S. A. et al. Extinction towards the cluster R136 in the Large Magellanic Cloud. An extinction law from the near-infrared to the ultraviolet. Astron. Astrophys. 673, A132 (2023).

    Article 

    Google Scholar
     

  • Tehrani, K. A. et al. Weighing Melnick 34: the most massive binary system known. Mon. Not. R. Astron. Soc. 484, 2692–2710 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schnurr, O., Moffat, A. F. J., St-Louis, N., Morrell, N. I. & Guerrero, M. A. A spectroscopic survey of WNL stars in the Large Magellanic Cloud: general properties and binary status. Mon. Not. R. Astron. Soc. 389, 806–828 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shenar, T. et al. The Wolf–Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud. Spectroscopy, orbital analysis, formation, and evolution. Astron. Astrophys. 627, A151 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Castro, N. et al. Mapping the core of the Tarantula nebula with VLT-MUSE. I. Spectral and nebular content around R136. Astron. Astrophys. 614, A147 (2018).

    Article 

    Google Scholar
     

  • Sana, H. et al. The VLT-FLAMES Tarantula survey. VIII. Multiplicity properties of the O-type star population. Astron. Astrophys. 550, A107 (2013).

    Article 

    Google Scholar
     

  • Mahy, L. et al. The Tarantula massive binary monitoring. III. Atmosphere analysis of double-lined spectroscopic systems. Astron. Astrophys. 634, A118 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shenar, T. et al. The Tarantula massive binary monitoring. V. R 144: a wind-eclipsing binary with a total mass ≳140 M⊙. Astron. Astrophys. 650, A147 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sabín-Sanjulián, C. et al. The VLT-FLAMES Tarantula survey. XXVI. Properties of the O-dwarf population in 30 Doradus. Astron. Astrophys. 601, A79 (2017).

    Article 

    Google Scholar
     

  • McEvoy, C. M. et al. The VLT-FLAMES Tarantula Survey. XIX. B-type supergiants: atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence. Astron. Astrophys. 575, A70 (2015).

    Article 

    Google Scholar
     

  • Evans, C. J., van Loon, J. T., Hainich, R. & Bailey, M. 2dF-AAOmega spectroscopy of massive stars in the Magellanic Clouds. The north-eastern region of the Large Magellanic Cloud. Astron. Astrophys. 584, A5 (2015).

    Article 

    Google Scholar
     

  • Walborn, N. R., Lennon, D. J., Haser, S. M., Kudritzki, R.-P. & Voels, S. A. The physics of massive OB stars in different parent galaxies. I. Ultraviolet and optical spectral morphology in the Magellanic Clouds. Publ. Astron. Soc. Pac. 107, 104 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Walborn, N. R. et al. A CNO dichotomy among O2 giant spectra in the Magellanic Clouds. Astrophys. J. 608, 1028–1038 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carretero-Castrillo, M., Ribó, M. & Paredes, J. M. Galactic runaway O and Be stars found using Gaia DR3. Astron. Astrophys. 679, A109 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Stoop, M. et al. Reproduction package for the paper ‘Two waves of massive stars running away from the young cluster R136’. Zenodo https://doi.org/10.5281/zenodo.10058762 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments