Thursday, October 10, 2024
No menu items!
HomeNaturePeptide programming of supramolecular vinylidene fluoride ferroelectric phases

Peptide programming of supramolecular vinylidene fluoride ferroelectric phases

  • Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, W., Li, J., Liu, H. & Ge, S. Advancing versatile ferroelectric materials toward biomedical applications. Adv. Sci. Weinh. 8, 2003074 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qian, X. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600, 664–669 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562, 96–100 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, X., Chen, X., Zhu, L. & Zhang, Q. M. Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science 380, eadg0902 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, K., Makam, P., Aizen, R. & Gazit, E. Self-assembling peptide semiconductors. Science 358, eaam9756 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nat. Mater. 7, 357–366 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tayi, A. S., Kaeser, A., Matsumoto, M., Aida, T. & Stupp, S. I. Supramolecular ferroelectrics. Nat. Chem. 7, 281–294 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horiuchi, S. et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789–792 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E. & Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyajima, D. et al. Ferroelectric columnar liquid crystal featuring confined polar groups within core-shell architecture. Science 336, 209–213 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tayi, A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488, 485–489 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawai, H. The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8, 975 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H.-Y., Tang, Y.-Y., Shi, P.-P. & Xiong, R.-G. Toward the targeted design of molecular ferroelectrics: modifying molecular symmetries and homochirality. Acc. Chem. Res. 52, 1928–1938 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Narayanan, A. et al. Ferroelectric polarization and second harmonic generation in supramolecular cocrystals with two axes of charge-transfer. J. Am. Chem. Soc. 139, 9186–9191 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimura, K. & Ohigashi, H. Polarization behavior in vinylidene fluoride-trifluoroethylene copolymer thin films. Jpn. J. Appl. Phys. 25, 383 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Herman, Umemoto, S., Kikutani, T. & Okui, N. Chain length effects on crystal formation in vinylidene fluoride oligomers. Polym. J. 30, 659–663 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Yoshida, Y., Ishida, K., Ishizaki, K., Horiuchi, T. & Matsushige, K. Effect of substrate temperature on molecular orientation in evaporated thin films of vinylidene fluoride oligomer. Jpn. J. Appl. Phys. 36, 7389 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noda, K. et al. Remanent polarization of evaporated films of vinylidene fluoride oligomers. J. Appl. Phys. 93, 2866–2870 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • García-Iglesias, M. et al. A versatile method for the preparation of ferroelectric supramolecular materials via radical end-functionalization of vinylidene fluoride oligomers. J. Am. Chem. Soc. 138, 6217–6223 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, H., Cheetham, A. G., Pashuck, E. T. & Stupp, S. I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc. 136, 12461–12468 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paramonov, S. E., Jun, H.-W. & Hartgerink, J. D. Self-assembly of peptide−amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 128, 7291–7298 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muraoka, T., Cui, H. & Stupp, S. I. Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. J. Am. Chem. Soc. 130, 2946–2947 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, M., Tashiro, K. & Tadokoro, H. Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8, 158–171 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shivu, B. et al. Distinct β-sheet structure in protein aggregates determined by ATR–FTIR spectroscopy. Biochemistry 52, 5176–5183 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sangji, M. H. et al. Supramolecular interactions and morphology of self-assembling peptide amphiphile nanostructures. Nano Lett. 21, 6146–6155 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasegawa, R., Takahashi, Y., Chatani, Y. & Tadokoro, H. Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym. J. 3, 600–610 (1972).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer 54, 1709–1728 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. M., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 375, 1418–1422 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott, J. F. Ferroelectrics go bananas. J. Phys. Condens. Matter 20, 021001 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Leung, C.-Y. et al. Crystalline polymorphism induced by charge regulation in ionic membranes. Proc. Natl Acad. Sci. USA 110, 16309–16314 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 18, 143–211 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Álvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung, A. M. & Stupp, S. I. Understanding factors affecting alignment of self-assembling nanofibers patterned by sonication-assisted solution embossing. Langmuir 25, 7084–7089 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments