Monday, January 13, 2025
No menu items!
HomeNatureJet stream controls on European climate and agriculture since 1300 ce

Jet stream controls on European climate and agriculture since 1300 ce

  • Stendel, M., Francis, J., White, R., Williams, P. D. & Woollings, T. in Climate Change 3rd edn (ed. Letcher, T. M.) 327–357 (Elsevier, 2021).

  • Woollings, T., Drouard, M., O’Reilly, C. H., Sexton, D. M. H. & McSweeney, C. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Commun. Earth Environ. 4, 125 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Galfi, V. M. & Messori, G. Persistent anomalies of the North Atlantic jet stream and associated surface extremes over Europe. Environ. Res. Lett. 18, 024017 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wahl, E. R., Zorita, E., Trouet, V. & Taylor, A. H. Jet stream dynamics, hydroclimate, and fire in California from 1600 ce to present. Proc. Natl Acad. Sci. USA 116, 5393–5398 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, A., Lehmann, J., Barriopedro, D., Rahmstorf, S. & Coumou, D. Increasing heat and rainfall extremes now far outside the historical climate. NPJ Clim. Atmos. Sci. 4, 45 (2021).

    Article 

    Google Scholar
     

  • Faranda, D., Messori, G., Jezequel, A., Vrac, M. & Yiou, P. Atmospheric circulation compounds anthropogenic warming and impacts of climate extremes in Europe. Proc. Natl Acad. Sci. USA 120, e2214525120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, T. A. & Miyawaki, O. Fast upper-level jet stream winds get faster under climate change. Nat. Clim. Change 14, 61–67 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl Acad. Sci. USA 111, 12331–12336 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • AghaKouchak, A. et al. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 48, 519–548 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • European Environment Agency. The First European Climate Risk Assessment (EUCRA) Executive Summary (European Environment Agency, 2024).

  • Balch, J. K. et al. Social‐environmental extremes: rethinking extraordinary events as outcomes of interacting biophysical and social systems. Earth’s Future 8, e2019EF001319 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Beillouin, D., Schauberger, B., Bastos, A., Ciais, P. & Makowski, D. Impact of extreme weather conditions on European crop production in 2018. Philos. Trans. R. Soc. B. Biol. Sci. 375, 20190510 (2020).

    Article 

    Google Scholar
     

  • Zampieri, M., Ceglar, A., Dentener, F. & Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 12, 064008 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sah, R. P. et al. Impact of water deficit stress in maize: phenology and yield components. Sci. Rep. 10, 2944 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helman, D. & Bonfil, D. J. Six decades of warming and drought in the world’s top wheat-producing countries offset the benefits of rising CO2 to yield. Sci. Rep. 12, 7921 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kornhuber, K. et al. Risks of synchronized low yields are underestimated in climate and crop model projections. Nat. Commun. 14, 3528 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahlstein, I., Martius, O., Chevalier, C. & Ginsbourger, D. Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett. 39, L22805 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Belmecheri, S., Babst, F., Hudson, A. R., Betancourt, J. & Trouet, V. Northern Hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact. 21, 1–23 (2017).

    Article 

    Google Scholar
     

  • Dorado-Liñán, I. et al. Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nat. Commun. 13, 2015 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, P. & Flannigan, M. The relationship between the polar jet stream and extreme wildfire events in North America. J. Clim. 34, 6247–6265 (2021).

    ADS 

    Google Scholar
     

  • Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci Rep. 5, 17491 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trouet, V., Babst, F. & Meko, M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context. Nat. Commun. 9, 180 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiland, R. S., van der Wiel, K., Selten, F. & Coumou, D. Intransitive atmosphere dynamics leading to persistent hot-dry or cold-wet European summers. J. Clim. 34, 1–48 (2021).

    Article 

    Google Scholar
     

  • Gagen, M. H. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci. 9, 630–635 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ljungqvist, F. C., Seim, A. & Huhtamaa, H. Climate and society in European history. WIREs Clim. Change 12, e691 (2021).

    Article 

    Google Scholar
     

  • Campbell, B. M. & Ludlow, F. Climate, disease and society in late-medieval Ireland. Proc. R. Ir. Acad. Archaeol. Culture Hist. Lit. 120C, 159–252 (2020).


    Google Scholar
     

  • Camenisch, C. et al. The 1430s: a cold period of extraordinary internal climate variability during the early Sporer Minimum with social and economic impacts in north-western and central Europe. Clim. Past 12, 2107–2126 (2016).

    Article 

    Google Scholar
     

  • Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9, 4249 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rydval, M. et al. Reconstructing 800 years of summer temperatures in Scotland from tree rings. Clim. Dyn. 49, 2951–2974 (2017).

    Article 

    Google Scholar
     

  • Büntgen, U., Frank, D. C., Nievergelt, D. & Esper, J. Summer temperature variations in the European Alps, A.D. 755–2004. J. Clim. 19, 5606–5623 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Wanner, H., Pfister, C. & Neukom, R. The variable European Little Ice Age. Quat. Sci. Rev. 287, 107531 (2022).

    Article 

    Google Scholar
     

  • Luterbacher, J. & Pfister, C. The year without a summer. Nat. Geosci. 8, 246–248 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luterbacher, J. et al. Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim. Dyn. 18, 545–561 (2002).

    Article 

    Google Scholar
     

  • Casty, C., Raible, C. C., Stocker, T. F., Wanner, H. & Luterbacher, J. A European pattern climatology 1766–2000. Clim. Dyn. 29, 791–805 (2007).

    Article 

    Google Scholar
     

  • Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ljungqvist, F. C. et al. Climatic signatures in early modern European grain harvest yields. Clim. Past 19, 2463–2491 (2023).

    Article 

    Google Scholar
     

  • Esper, J. et al. Environmental drivers of historical grain price variations in Europe. Clim. Res. 72, 39–52 (2017).

    Article 

    Google Scholar
     

  • Ljungqvist, F. C. et al. The significance of climate variability on early modern European grain prices. Cliometrica 16, 29–77 (2022).

    Article 

    Google Scholar
     

  • Pfister, C. & Wanner, H. Climate and Society in Europe: The Last Thousand Years (Haupt, 2021).

  • Rharrabti, Y., Villegas, D., Royo, C., Martos-Núñez, V. & Garcı́a del Moral, L. F. Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops Res. 80, 133–140 (2003).

    Article 

    Google Scholar
     

  • Yang, C., Fraga, H., van Ieperen, W. & Santos, J. A. Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal. Agric. Syst. 182, 102844 (2020).

    Article 

    Google Scholar
     

  • Campbell, B. M. The Great Transition: Climate, Disease and Society in the Late-Medieval World (Cambridge Univ. Press, 2016).

  • Büntgen, U., Ginzler, C., Esper, J., Tegel, W. & McMichael, A. J. Digitizing historical plague. Clin. Infect. Dis. 55, 1586–1588 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Degroot, D. et al. Towards a rigorous understanding of societal responses to climate change. Nature 591, 539–550 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. Nat. Commun. 13, 1288 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Oldenborgh, G. J. et al. Attributing and projecting heatwaves is hard: we can do better. Earths Future 10, e2021EF002271 (2022).

    Article 
    ADS 

    Google Scholar
     

  • van Engelen, A. F. V., Buisman, J. & Ijnsen, F. in History and Climate: Memories of the Future? (eds Jones, P. D. et al.) 101–124 (Springer, 2001).

  • Camuffo, D. et al. 500-Year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Clim. Change 101, 169–199 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Cole, G. A. & Marsh, T. J. in Climate Variability and Change: Hydrological Impacts (eds Demuth, S. et al.) Vol. 308, 483–489 (2006).

  • Pavese, M. P., Banzon, V., Colacino, M., Gregori, G. P. & Pasqua, M. in Climate Since AD 1500 (eds Bradley, R. S. & Jones, P. D.) 155–170 (Routledge, 1992).

  • Kiss, A., Wilson, R. & Bariska, I. An experimental 392-year documentary-based multi-proxy (vine and grain) reconstruction of May-July temperatures for Koszeg, West-Hungary. Int. J. Biometeorol. 55, 595–611 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Manley, G. Central England temperatures: monthly means 1659 to 1973. Q. J. R. Meteorol. Soc. 100, 389–405 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Parker, D. & Horton, B. Uncertainties in central England temperature 1878-2003 and some improvements to the maximum and minimum series. Int. J. Climatol. 25, 1173–1188 (2005).

    Article 

    Google Scholar
     

  • Böhm, R. et al. The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Clim. Change 101, 41–67 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Murphy, C. et al. A 305-year continuous monthly rainfall series for the island of Ireland (1711–2016). Clim. Past 14, 413–440 (2018).

    Article 

    Google Scholar
     

  • Alexander, L. V. & Jones, P. D. Updated precipitation series for the U.K. and discussion of recent extremes. Atmos. Sci. Lett. 1, 142–150 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Rácz, L. Carpathian Basin – the winner of the Little Ice Age climate changes: long-term time-series analysis of grain, grape and hay harvests between 1500 and 1850. Econ. Ecohist. 16, 81–96 (2020).


    Google Scholar
     

  • Clark, G. in Research in Economic History Vol. 22, 41–123 (Emerald, 2004).

  • Barton, N. P. & Ellis, A. W. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data: winter North Pacific jet stream variability. Int. J. Climatol. 29, 851–862 (2009).

    Article 

    Google Scholar
     

  • Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q. J. R. Meteorol. Soc. 136, 856–868 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Harnik, N., Galanti, E., Martius, O. & Adam, O. The anomalous merging of the African and North Atlantic jet streams during the Northern Hemisphere winter of 2010. J. Clim. 27, 7319–7334 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lachmy, O. & Harnik, N. Wave and jet maintenance in different flow regimes. J. Atmos. Sci. 73, 2465–2484 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 77, 437–472 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trouet, V. & Van Oldenborgh, G. J. KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree-Ring Res. 69, 3–13 (2013).

    Article 

    Google Scholar
     

  • Engeland, K., Hisdal, H. & Frigessi, A. Practical extreme value modelling of hydrological floods and droughts: a case study. Extremes 7, 5–30 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc B 57, 289–300 (1995).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wilks, D. S. “The Stippling Shows Statistically Significant Grid Points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull. Am. Meteor. Soc. 97, 2263–2273 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Iizumi, T. & Sakai, T. The global dataset of historical yields for major crops 1981–2016. Sci. Data 7, 97 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esper, J., Düthorn, E., Krusic, P. J., Timonen, M. & Büntgen, U. Northern European summer temperature variations over the Common Era from integrated tree-ring density records: Northern European common era summer temperatures. J. Quat. Sci. 29, 487–494 (2014).

    Article 

    Google Scholar
     

  • Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Rydval, M., Druckenbrod, D., Anchukaitis, K. J. & Wilson, R. Detection and removal of disturbance trends in tree-ring series for dendroclimatology. Can. J. Forest Res. 46, 387–401 (2016).

    Article 

    Google Scholar
     

  • Melvin, T. M. & Briffa, K. R. A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26, 71–86 (2008).

    Article 

    Google Scholar
     

  • Briffa, K. R. & Melvin, T. M. in Dendroclimatology: Progress and Prospects (eds Hughes, M. K.) 113–145 (Springer, 2011).

  • Trouet, V., Panayotov, M. P., Ivanova, A. & Frank, D. A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (AD 1768–2008). Holocene 22, 887–898 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Esper, J. et al. Eastern Mediterranean summer temperatures since 730 CE from Mt. Smolikas tree-ring densities. Clim. Dyn. 54, 1367–1382 (2020).

    Article 

    Google Scholar
     

  • Klippel, L. et al. A 1200+ year reconstruction of temperature extremes for the northeastern Mediterranean region. Int. J. Climatol. 39, 2336–2350 (2019).

    Article 

    Google Scholar
     

  • Klesse, S., Ziehmer, M., Rousakis, G., Trouet, V. & Frank, D. Synoptic drivers of 400 years of summer temperature and precipitation variability on Mt. Olympus, Greece. Clim. Dyn. 45, 807–824 (2015).

    Article 

    Google Scholar
     

  • Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).


    Google Scholar
     

  • Trouet, V. A tree-ring based late summer temperature reconstruction (ad 1675–1980) for the Northeastern Mediterranean. Radiocarbon 56, S69–S78 (2014).

    Article 

    Google Scholar
     

  • Helama, S., Melvin, T. M. & Briffa, K. R. Regional curve standardization: state of the art. Holocene 27, 172–177 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Kluwer Academic, 1990).

  • Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361–370 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258 (2010).

    Article 

    Google Scholar
     

  • Deser, C., Terray, L. & Phillips, A. S. Forced and internal components of winter air temperature trends over North America during the past 50 Years: mechanisms and implications. J. Clim. 29, 2237–2258 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gagen, M. et al. Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17, 435–446 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 79, 61–78 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Christopoulou, A., Fulé, P. Z., Andriopoulos, P., Sarris, D. & Arianoutsou, M. Dendrochronology-based fire history of Pinus nigra forests in Mount Taygetos, Southern Greece. For. Ecol. Manage. 293, 132–139 (2013).

    Article 

    Google Scholar
     

  • Vasileva, P. & Panayotov, M. Dating fire events in Pinus heldreichii forests by analysis of tree ring cores. Dendrochronologia 38, 98–102 (2016).

    Article 

    Google Scholar
     

  • Şahan, E. A. et al. Fire history of Pinus nigra in Western Anatolia: a first dendrochronological study. Dendrochronologia 69, 125874 (2021).

    Article 

    Google Scholar
     

  • Rey, D. & Neuhäuser, M. in International Encyclopedia of Statistical Science (ed. Lovric, M.) (Springer, 2011).

  • Xu, G., Broadman, E., Dorado-Liñán, I., & Trouet, V. Jet stream controls on European climate and agriculture since 1300 ce, Zenodo, V1, https://doi.org/10.5281/zenodo.13120683 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments