Syvitski, J. & Brakenridge, R. Causation and avoidance of catastrophic flooding along the Indus River, Pakistan. GSA Today 23, 4â10 (2013).
Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228â244 (2015).
Sinha, R. The great avulsion of Kosi on 18 August 2008. Curr. Sci. 97, 429â433 (2009).
Todd, O. J. & Eliassen, S. The Yellow River problem. Trans. Am. Soc. Civil Eng. 105, 346â416 (1940).
Mohrig, D., Heller, P. L., Paola, C. & Lyons, W. J. Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (northern Spain) and Wasatch Formation (western Colorado). GSA Bull. 112, 1787â1803 (2000).
Slingerland, R. & Smith, N. D. Necessary conditions for a meandering-river avulsion. Geology 26, 435â438 (1998).
Tornqvist, T. E. & Bridge, J. S. Spatial variation of overbank aggradation rate and its influence on avulsion frequency. Sedimentology 49, 891â905 (2002).
Chadwick, A. J., Lamb, M. P. & Ganti, V. Accelerated river avulsion frequency on lowland deltas due to sea-level rise. Proc. Natl Acad. Sci. 117, 17584â17590 (2020).
Slingerland, R. & Smith, N. D. River avulsions and their deposits. Annu. Rev. Earth Planet. Sci. 32, 257â285 (2004).
Jerolmack, D. J. & Mohrig, D. Conditions for branching in depositional rivers. Geology 35, 463â466 (2007).
Ganti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J. & Lamb, M. P. Avulsion cycles and their stratigraphic signature on an experimental backwater-controlled delta. J. Geophys. Res. Earth Surf. 121, 1651â1675 (2016).
Ganti, V., Lamb, M. P. & Chadwick, A. J. Autogenic erosional surfaces in fluvio-deltaic stratigraphy from floods, avulsions, and backwater hydrodynamics. J. Sediment. Res. 89, 815â832 (2019).
Allen, J. R. L. Studies in fluviatile sedimentation: an exploratory quantitative model for the architecture of avulsion-controlled alluvial suites. Sediment. Geol. 21, 129â147 (1978).
Bridge, J. S. & Leeder, M. R. A simulation model of alluvial stratigraphy. Sedimentology 26, 617â644 (1979).
Hajek, E. A. & Wolinsky, M. A. Simplified process modeling of river avulsion and alluvial architecture: connecting models and field data. Sediment. Geol. 257â260, 1â30 (2012).
Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004 (2007).
Ganti, V., Chu, Z., Lamb, M. P., Nittrouer, J. A. & Parker, G. Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China. Geophys. Res. Lett. 41, 7882â7890 (2014).
Brooke, S. et al. Where rivers jump course. Science 376, 987â990 (2022).
Neuenschwander, A., Guenther, E., White, J. C., Duncanson, L. & Montesano, P. Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sens. Environ. 251, 112110 (2020).
Hawker, L. et al. A 30 m global map of elevation with forests and buildings removed. Environ. Res. Lett. 17, 024016 (2022).
Deal, E. Downstream hydraulic geometry data compilation. HydroShare http://www.hydroshare.org/resource/0629ffb81fdb40aa9e6be42cc11918ca (2021).
Anderson, R. S. & Anderson, S. P. Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge Univ. Press, 2010).
Aslan, A., Autin, W. J. & Blum, M. D. Causes of river avulsion: insights from the late Holocene avulsion history of the Mississippi River, U.S.A. J. Sediment. Res. 75, 650â664 (2005).
Rahman, M. M., Howell, J. A. & MacDonald, D. I. M. Quantitative analysis of crevasse-splay systems from modern fluvial settings. J. Sediment. Res. 92, 751â774 (2022).
Martin, H. K. & Edmonds, D. A. The push and pull of abandoned channels: how floodplain processes and healing affect avulsion dynamics and alluvial landscape evolution in foreland basins. Earth Surf. Dyn. 10, 555â579 (2022).
Jobe, Z. R. et al. Comparing aggradation, superelevation, and avulsion frequency of submarine and fluvial channels. Front. Earth Sci. 8, 53 (2020).
Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514â518 (2020).
Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 4741 (2020).
Best, J., Ashmore, P. & Darby, S. E. Beyond just floodwater. Nat. Sustain. 5, 811â813 (2022).
Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816â821 (2013).
Alifu, H., Hirabayashi, Y., Imada, Y. & Shiogama, H. Enhancement of river flooding due to global warming. Sci. Rep. 12, 20687 (2022).
Bates, P. Fundamental limits to flood inundation modelling. Nat. Water 1, 566â567 (2023).
Edmonds, D. A., Hajek, E. A., Downton, N. & Bryk, A. B. Avulsion flow-path selection on rivers in foreland basins. Geology 44, 695â698 (2016).
Valenza, J. M., Edmonds, D. A., Hwang, T. & Roy, S. Downstream changes in river avulsion style are related to channel morphology. Nat. Commun. 11, 2116 (2020).
Xing, Y., Huang, J., Gruen, A. & Qin, L. Assessing the performance of ICESat-2/ATLAS multi-channel photon data for estimating ground topography in forested terrain. Remote Sen. 12, 2084 (2020).
Neuenschwander, A. L. et al. ATLAS/ICESat-2 L3a Land and Vegetation Height, Version 6. National Snow and Ice Data Center https://doi.org/10.5067/ATLAS/ATL08.006 (2023).
Dandabathula, G., Hari, R., Ghosh, K., Bera, A. K. & Srivastav, S. K. Accuracy assessment of digital bare-earth model using ICESat-2 photons: analysis of the FABDEM. Model. Earth Syst. Environ. 9, 2677â2694 (2023).
Seeger, K. et al. Assessing land elevation in the Ayeyarwady Delta (Myanmar) and its relevance for studying sea level rise and delta flooding. Hydrol. Earth Syst. Sci. 27, 2257â2281 (2023).
Fahrland, E. Copernicus DEM product handbook. Airbus Defence and Space GmbH (2022).
Leopold, L. B. & Maddock, T. The hydraulic geometry of stream channels and some physiographic implications. USGS Professional Paper No. 252 (1953).
Parker, G. Hydraulic geometry of active gravel rivers. J. Hydraul. Div. 105, 1185â1201 (1979).
Dunne, K. B. J. & Jerolmack, D. J. Evidence of, and a proposed explanation for, bimodal transport states in alluvial rivers. Earth Surf. Dyn. 6, 583â594 (2018).
Shwartz-Ziv, R. & Armon, A. Tabular data: deep learning is not all you need. Inf. Fusion 81, 84â90 (2022).
NVIDIA Data Science Glossary. XGBoost https://www.nvidia.com/en-us/glossary/data-science/xgboost/.
Trampush, S. M., Huzurbazar, S. & McElroy, B. Empirical assessment of theory for bankfull characteristics of alluvial channels. Water Resour. Res. 50, 9211â9220 (2014).
Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).
Müller Schmied, H. et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation. Geosci. Model Dev. 14, 1037â1079 (2021).
Gearon, J. Rules of river avulsion supplementary data files. Zenodo https://doi.org/10.5281/zenodo.10338685 (2024).
Gearon, J. jameshgrn/rulesofriveravulsion: publication_release. Zenodo https://doi.org/10.5281/zenodo.13693548 (2024).
Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the worldâs large river systems. Hydrol. Process. 27, 2171â2186 (2013).
Center for International Earth Science Information Network (CIESIN), Columbia University. Global Gridded Relative Deprivation Index (GRDI), Version 1. NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/3xxe-ap97 (2022).
G20 Background Brief. G20 Presidency https://www.g20.org/en/about-the-g20 (2023).