Thursday, September 19, 2024
No menu items!
HomeNatureBlack hole jets on the scale of the cosmic web

Black hole jets on the scale of the cosmic web

  • Hardcastle, M. J. et al. Radio-loud AGN in the first LoTSS data release. The lifetimes and environmental impact of jet-driven sources. Astron. Astrophys. 622, A12 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Perucho, M., Martí, J.-M. & Quilis, V. Long-term FRII jet evolution: clues from three-dimensional simulations. Mon. Not. R. Astron. Soc. 482, 3718–3735 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dabhade, P., Saikia, D. J. & Mahato, M. Decoding the giant extragalactic radio sources. J. Astrophys. Astron. 44, 13 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ayromlou, M., Nelson, D. & Pillepich, A. Feedback reshapes the baryon distribution within haloes, in halo outskirts, and beyond: the closure radius from dwarfs to massive clusters. Mon. Not. R. Astron. Soc. 524, 5391–5410 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beck, A. M., Hanasz, M., Lesch, H., Remus, R. S. & Stasyszyn, F. A. On the magnetic fields in voids. Mon. Not. R. Astron. Soc. 429, L60–L64 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Vazza, F. et al. Simulations of extragalactic magnetic fields and of their observables. Class. Quantum Gravity 34, 234001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Willis, A. G., Strom, R. G. & Wilson, A. S. 3C236, DA240; the largest radio sources known. Nature 250, 625–630 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Machalski, J., Kozieł-Wierzbowska, D., Jamrozy, M. & Saikia, D. J. J1420–0545: the radio galaxy larger than 3C 236. Astrophys. J. 679, 149–155 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oei, M. S. S. L. et al. The discovery of a radio galaxy of at least 5 Mpc. Astron. Astrophys. 660, A2 (2022).

    Article 

    Google Scholar
     

  • Correa, C. M. et al. Redshift-space effects in voids and their impact on cosmological tests. Part I: the void size function. Mon. Not. R. Astron. Soc. 500, 911–925 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perucho, M. Dissipative processes and their role in the evolution of radio galaxies. Galaxies 7, 70 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Andernach, H., Jiménez-Andrade, E. F. & Willis, A. G. Discovery of 178 giant radio galaxies in 1059 deg2 of the Rapid ASKAP Continuum Survey at 888 MHz. Galaxies 9, 99 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dabhade, P. et al. Giant radio galaxies in the LOFAR Two-metre Sky Survey. I. Radio and environmental properties. Astron. Astrophys. 635, A5 (2020).

    Article 

    Google Scholar
     

  • Oei, M. S. S. L. et al. Measuring the giant radio galaxy length distribution with the LoTSS. Astron. Astrophys. 672, A163 (2023).

    Article 

    Google Scholar
     

  • Mostert, R. I. J. et al. Constraining the giant radio galaxy population with machine learning and Bayesian inference. Preprint at https://arxiv.org/abs/2405.00232 (2024).

  • Hardcastle, M. J. et al. The LOFAR Two-Metre Sky Survey. VI. Optical identifications for the second data release. Astron. Astrophys. 678, A151 (2023).

    Article 

    Google Scholar
     

  • Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hardcastle, M. Interpreting radiative efficiency in radio-loud AGNs. Na. Astron. 2, 273–274 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Buttiglione, S. et al. An optical spectroscopic survey of the 3CR sample of radio galaxies with z < 0.3. II. Spectroscopic classes and accretion modes in radio-loud AGN. Astron. Astrophys. 509, A6 (2010).

    Article 

    Google Scholar
     

  • Williams, W. L. et al. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0. Mon. Not. R. Astron. Soc. 475, 3429–3452 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oei, M. S. S. L. et al. Luminous giants populate the dense Cosmic Web. The radio luminosity–environmental density relation for radio galaxies in action. Astron. Astrophys. 686, A137 (2024).

    Article 

    Google Scholar
     

  • Wen, Z. L. & Han, J. L. A catalog of 1.58 million clusters of galaxies identified from the DESI Legacy Imaging Surveys. Astrophys. J. Suppl. Ser. 272, 39 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources. Astron. Astrophys. 594, A27 (2016).

    Article 

    Google Scholar
     

  • Ineson, J. et al. Radio-loud active galactic nucleus: is there a link between luminosity and cluster environment? Astrophys. J. 770, 136 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ineson, J. et al. The link between accretion mode and environment in radio-loud active galaxies. Mon. Not. R. Astron. Soc. 453, 2682–2706 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Forero-Romero, J. E., Hoffman, Y., Gottlöber, S., Klypin, A. & Yepes, G. A dynamical classification of the cosmic web. Mon. Not. R. Astron. Soc. 396, 1815–1824 (2009).

    Article 
    ADS 

    Google Scholar
     

  • van Weeren, R. J. et al. Radio observations of ZwCl 2341.1+0000: a double radio relic cluster. Astron. Astrophys. 506, 1083–1094 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hardcastle, M. J. A simulation-based analytic model of radio galaxies. Mon. Not. R. Astron. Soc. 475, 2768–2786 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

    Article 

    Google Scholar
     

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 659, A1 (2022).

    Article 

    Google Scholar
     

  • Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release. Astron. Astrophys. 598, A104 (2017).

    Article 

    Google Scholar
     

  • Tasse, C. et al. DDFacet: facet-based radio imaging package. Astrophysics Source Code Library, record ascl:2305.008 (2023).

  • van Weeren, R. J. et al. LOFAR observations of galaxy clusters in HETDEX. Extraction and self-calibration of individual LOFAR targets. Astron. Astrophys. 651, A115 (2021).

    Article 

    Google Scholar
     

  • Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Morabito, L. K. et al. Sub-arcsecond imaging with the International LOFAR Telescope. I. Foundational calibration strategy and pipeline. Astron. Astrophys. 658, A1 (2022).

    Article 

    Google Scholar
     

  • Jackson, N. et al. LBCS: the LOFAR Long-Baseline Calibrator Survey. Astron. Astrophys. 595, A86 (2016).

    Article 

    Google Scholar
     

  • Jackson, N. et al. Sub-arcsecond imaging with the International LOFAR Telescope. II. Completion of the LOFAR Long-Baseline Calibrator Survey. Astron. Astrophys. 658, A2 (2022).

    Article 

    Google Scholar
     

  • Gupta, Y. et al. The upgraded GMRT: opening new windows on the radio Universe. Curr. Sci. 113, 707–714 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Intema, H. T. SPAM: Source Peeling and Atmospheric Modeling. Astrophysics Source Code Library, record ascl:1408.006 (2014).

  • Mohan, N. & Rafferty, D. PyBDSF: Python Blob Detection and Source Finder. Astrophysics Source Code Library, record ascl:1502.007 (2015).

  • Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dey, A. et al. Overview of the DESI Legacy Imaging Surveys. Astron. J. 157, 168 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duncan, K. J. All-purpose, all-sky photometric redshifts for the Legacy Imaging Surveys Data Release 8. Mon. Not. R. Astron. Soc. 512, 3662–3683 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    Article 
    ADS 

    Google Scholar
     

  • McCarthy, J. K. et al. in Proc. SPIE Conference on Optical Astronomical Instrumentation (ed. D’Odorico, S.) 81–92 (SPIE, 1998).

  • Steidel, C. C. et al. A survey of star-forming galaxies in the 1.4 ≲ z ≲ 2.5 redshift desert: overview. Astrophys. J. 604, 534–550 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rockosi, C. et al. in Proc. Ground-based and Airborne Instrumentation for Astronomy III (eds McLean, I. S., Ramsay, S. K. & Takami, H.) 77350R (SPIE, 2010).

  • Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Dawson, K. S. et al. The Baryon Oscillation Spectroscopic Survey of SDSS-III. Astron. J. 145, 10 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2019).

  • Jarrett, T. H. et al. The Spitzer–WISE survey of the ecliptic poles. Astrophys. J. 735, 112 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Calistro Rivera, G., Lusso, E., Hennawi, J. F. & Hogg, D. W. AGNfitter: a Bayesian MCMC approach to fitting spectral energy distributions of AGNs. Astrophys. J. 833, 98 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Martínez-Ramírez, L. N. et al. AGNFITTER-RX: Modeling the radio-to-X-ray spectral energy distributions of AGNs. Astron. Astrophys. 688, A46 (2024).

  • Pasini, T. et al. Radio galaxies in galaxy groups: kinematics, scaling relations, and AGN feedback. Mon. Not. R. Astron. Soc. 505, 2628–2637 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arnaud, M. et al. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the YSZ – M500 relation. Astron. Astrophys. 517, A92 (2010).

    Article 

    Google Scholar
     

  • Sun, M. et al. The pressure profiles of hot gas in local galaxy groups. Astrophys. J. Lett. 727, L49 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cooke, R. J. & Fumagalli, M. Measurement of the primordial helium abundance from the intergalactic medium. Nat. Astron. 2, 957–961 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lovisari, L., Reiprich, T. H. & Schellenberger, G. Scaling properties of a complete X-ray selected galaxy group sample. Astron. Astrophys. 573, A118 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ricciardelli, E., Quilis, V. & Planelles, S. The structure of cosmic voids in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 434, 1192–1204 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Upton Sanderbeck, P. R., D’Aloisio, A. & McQuinn, M. J. Models of the thermal evolution of the intergalactic medium after reionization. Mon. Not. R. Astron. Soc. 460, 1885–1897 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tuominen, T. et al. An EAGLE view of the missing baryons. Astron. Astrophys. 646, A156 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hardcastle, M. J. & Krause, M. G. H. Numerical modelling of the lobes of radio galaxies in cluster environments. Mon. Not. R. Astron. Soc. 430, 174–196 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Barrows, R. S., Comerford, J. M., Stern, D. & Assef, R. J. A catalog of host galaxies for WISE-selected AGN: connecting host properties with nuclear activity and identifying contaminants. Astrophys. J. 922, 179 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Z.-F., Pan, D.-S., Pang, T.-T. & Huang, Y. A catalog of quasar properties from the Baryon Oscillation Spectroscopic Survey. Astrophys. J. Suppl. Ser. 234, 16 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sweijen, F. GitHub repository for legacystamps. https://github.com/tikk3r/legacystamps (2021).

  • LOFAR Collaboration. Website for LOFAR surveys data, including LoTSS DR2. https://lofar-surveys.org (2022).

  • Hardcastle, M. J. GitHub repository for ‘A simulation-based analytic model of radio galaxies’. https://github.com/mhardcastle/analytic (2021).

  • Oei, M. S. S. L. Code Ocean capsule for ‘Black hole jets on the scale of the cosmic web’. https://codeocean.com/capsule/3908804/tree (2024).

  • Lang, D., Hogg, D. W. & Schlegel, D. J. WISE photometry for 400 million SDSS sources. Astron. J. 151, 36 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, Y. A. et al. A quick look at the 3 GHz radio sky. I. Source statistics from the Very Large Array Sky Survey. Astrophys. J. Suppl. Ser. 255, 30 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Helfand, D. J., White, R. L. & Becker, R. H. The last of FIRST: the final catalog and source identifications. Astrophys. J. 801, 26 (2015).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments