Sunday, September 22, 2024
No menu items!
HomeNatureUltrahigh electromechanical response from competing ferroic orders

Ultrahigh electromechanical response from competing ferroic orders

  • Bhugra, H. & Piazza, G. (eds) Piezoelectric MEMS Resonators (Springer, 2017).

  • Zhang, S. et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – A review. Prog. Mater. Sci. 68, 1–66 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shung, K. K. & Zippuro, M. Ultrasonic transducers and arrays. IEEE Eng. Med. Biol. Mag. 15, 20–30 (1996).

    Article 

    Google Scholar
     

  • Qiu, C. et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 577, 350–354 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, M.-M. et al. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature 584, 377–381 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trolier-Mckinstry, S. & Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceram. 12, 7–17 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W. & Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. Giant piezoelectricity in oxide thin films with nanopillar structure. Science 369, 292–297 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaffe, B., Cook, W. R. & Jaffe, H. L. Piezoelectric Ceramics (Academic Press, 1971).

  • Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, F., Jin, L., Xu, Z. & Zhang, S. Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science 380, 87–93 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, F. et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264–268 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. Electrically induced cancellation and inversion of piezoelectricity in ferroelectric Hf0.5Zr0.5O2. Nat. Commun. 15, 860 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheema, S. S. et al. Giant energy storage and power density negative capacitance superlattices. Nature 629, 803–809 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eom, C.-B. & Trolier-McKinstry, S. Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1017 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kighelman, Z., Damjanovic, D., Cantoni, M. & Setter, N. Properties of ferroelectric PbTiO3 thin films. J. Appl. Phys. 91, 1495–1501 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, K.-I. et al. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939–4943 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Damjanovic, D. Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 8 (2009).

    Article 

    Google Scholar
     

  • Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977–980 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, F. et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, M. D., Houwman, E. P. & Rijnders, G. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates. Sci Rep. 7, 12915 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, B. Y. et al. High‐performance (Na0.5K0.5)NbO3 thin film piezoelectric energy harvester. J. Am. Ceram. Soc. 98, 119–124 (2014).

    Article 

    Google Scholar
     

  • Lv, P. et al. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy 97, 107182 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S., Zheng, F., Jin, C. & Fei, W. Thickness-dependent monoclinic phases and piezoelectric properties observed in polycrystalline (Pb0.94La0.04)(Zr0.60Ti0.40)O3 thin films. J. Phys. Chem. C 119, 17487–17492 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, M. D., Houwman, E. P., Dekkers, M. & Rijnders, G. Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically aligned columnar grains. ACS Appl. Mater. Interfaces 9, 9849–9861 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ. Sci. 11, 3531–3539 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Waqar, M. et al. Origin of giant electric-field-induced strain in faulted alkali niobate films. Nat. Commun. 13, 3922 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 1977).

  • Randall, C. A., Fan, Z., Reaney, I., Chen, L. Q. & Trolier‐McKinstry, S. Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, size effects, and applications. J. Am. Ceram. Soc. 104, 3775–3810 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shirane, G., Sawaguchi, E. & Takagi, Y. Dielectric properties of lead zirconate. Phys. Rev. 84, 476–481 (1951).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shirane, G. Ferroelectricity and antiferroelectricity in ceramic PbZrO3 containing Ba or Sr. Phys. Rev. 86, 219–227 (1952).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yao, Y. et al. Ferrielectricity in the archetypal antiferroelectric, PbZrO3. Adv. Mater. 35, 2206541 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mishra, S. K., Choudhury, N., Chaplot, S. L., Krishna, P. S. R. & Mittal, R. Competing antiferroelectric and ferroelectric interactions in NaNbO3: neutron diffraction and theoretical studies. Phys. Rev. B 76, 024110 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Z. X., Wang, X. B., Kuok, M. H. & Tang, S. H. Raman scattering investigations of the antiferroelectric–ferroelectric phase. J. Raman Spectrosc. 29, 379–384 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, L., Mitchell, D. C., Dmowski, W. & Egami, T. Local structure of NaNbO3: a neutron scattering study. Phys. Rev. B 88, 014105 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Yoneda, Y., Fu, D. & Kohara, S. Local structure analysis of NaNbO3. J. Phys. Conf. Ser. 502, 012022 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Darlington, C. N. W. & Megaw, H. D. The low-temperature phase transition of sodium niohate and the structure of the low-temperature phase, N. Acta Cryst. B29, 2171–2185 (1973).

    Article 

    Google Scholar
     

  • Lanfredi, S., Lente, M. H. & Eiras, J. A. Phase transition at low temperature in NaNbO3 ceramic. Appl. Phys. Lett. 80, 2731–2733 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, P., Liu, H., Chen, Z., Chen, L. & Wang, J. Unit-cell determination of epitaxial thin films based on reciprocal-space vectors by high-resolution X-ray diffractometry. J. Appl. Cryst. 47, 402–413 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Megaw, H. D. The seven phases of sodium niobate. Ferroelectrics 7, 87–89 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ren, X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91–94 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, D.-S. et al. Induced giant piezoelectricity in centrosymmetric oxides. Science 375, 653–657 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fairley, N. et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021).

    Article 

    Google Scholar
     

  • Ren, M. Q. et al. Analytical possibilities of highly focused ion beams in biomedical field. Nucl. Instrum. Methods Phys. Res. B 406, 15–24 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mayer, M. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. AIP Conf. Proc. 475, 541–544 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Blaha, P. et al. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat., 2021).

  • Ahmed, S. J. et al. BerryPI: a software for studying polarization of crystalline solids with WIEN2k density functional all-electron package. Comput. Phys. Commun. 184, 647–651 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

  • Chen, L.-Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hu, H.-L. & Chen, L.-Q. Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 81, 492–500 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Yang, T., Wang, B., Hu, J.-M. & Chen, L.-Q. Domain dynamics under ultrafast electric-field pulses. Phys. Rev. Lett. 124, 107601 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • King-Smith, R. D. & Vanderbilt, D. First-principles investigation of ferroelectricity in perovskite compounds. Phys. Rev. B 49, 5828–5844 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Diéguez, O., Rabe, K. M. & Vanderbilt, D. First-principles study of epitaxial strain in perovskites. Phys. Rev. B 72, 144101 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Mishra, S., Choudhury, N., Chaplot, S., Krishna, P. & Mittal, R. Competing antiferroelectric and ferroelectric interactions in NaNbO3: neutron diffraction and theoretical studies. Phys. Rev. B 76, 024110 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Tomeno, I., Tsunoda, Y., Oka, K., Matsuura, M. & Nishi, M. Lattice dynamics of cubic NaNbO3: an inelastic neutron scattering study. Phys. Rev. B 80, 104101 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, M.-H. et al. Electric-field-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO3. Acta Mater. 200, 127–135 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, M.-H. et al. Revealing the mechanism of electric-field-induced phase transition in antiferroelectric NaNbO3 by in situ high-energy x-ray diffraction. Appl. Phys. Lett. 118, 132903 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rupprecht, G. & Bell, R. O. Dielectric constant in paraelectric perovskites. Phys. Rev. 135, A748–A752 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y., Hu, S. Y., Liu, Z.-K. & Chen, L. Q. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427–429 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sakowski-Cowley, A. C., Łukaszewicz, K. & Megaw, H. D. The structure of sodium niobate at room temperature, and the problem of reliability in pseudosymmetric structures. Acta Cryst. B25, 851–865 (1969).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments