Wednesday, November 6, 2024
No menu items!
HomeNatureA brain-to-gut signal controls intestinal fat absorption

A brain-to-gut signal controls intestinal fat absorption

  • Barrett, K. E., Barman, S. M., Brooks, H. L. and Yuan, J. Ganong’s Review of Medical Physiology 26th edn. 475–476 (McGraw-Hill Medical, 2019).

  • Hall, J. E. Guyton and Hall Textbook of Medical Physiology 13th edn., 835–841 (Elsevier, 2016).

  • Koeppen, B. M. & Stanton, B. A. Berne & Levy Physiology 7th edn., 551–553 (Elsevier, 2018).

  • Alberti, K. G. M. M., Zimmet, P. & Shaw, J. The metabolic syndrome—a new worldwide definition. Lancet 366, 1059–1062 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Mourad, F. H. & Saade, N. E. Neural regulation of intestinal nutrient absorption. Prog. Neurobiol. 95, 149–162 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hussain, M. M. Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol. 25, 200–206 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delacour, D., Salomon, J., Robine, S. & Louvard, D. Plasticity of the brush border—the yin and yang of intestinal homeostasis. Nat. Rev. Gastroenterol. Hepatol. 13, 161–174 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chivers, D. J. & Hladik, C. M. Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J. Morphol. 166, 337–386 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iqbal, J. et al. An intrinsic gut leptin–melanocortin pathway modulates intestinal microsomal triglyceride transfer protein and lipid absorption. J. Lipid Res. 51, 1929–1942 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Travagli, R. A. & Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. Nat. Rev. Gastroenterol. Hepatol. 13, 389–401 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339–1368 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, K. N. & Carson, K. E. Central neurocircuits regulating food intake in response to gut inputs—preclinical evidence. Nutrients 13, 908 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doty, J. E. & Meyer, J. H. Vagotomy and antrectomy impairs canine fat absorption from solid but not liquid dietary sources. Gastroenterology 94, 50–56 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z., Lam, T. N. & Zuo, Z. Radix Puerariae: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol. 53, 787–811 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazzone, C. M. et al. Acute engagement of Gq-mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior. Mol. Psychiatry 23, 143–153 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gautron, L., Zechner, J. F. & Aguirre, V. Vagal innervation patterns following Roux-en-Y gastric bypass in the mouse. Int. J. Obes. 37, 1603–1607 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Borgstrom, B., Dahlqvist, A., Lundh, G. & Sjovall, J. Studies of intestinal digestion and absorption in the human. J. Clin. Invest. 36, 1521–1536 (1957).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Booth, C. C., Read, A. E. & Jones, E. Studies on the site of fat absorption: 1. The sites of absorption of increasing doses of I-labelled triolein in the rat. Gut 2, 23–31 (1961).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ludwig, M. Q. et al. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat. Metab. 3, 530–545 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. et al. The effect of puerarin on carotid intima-media thickness in patients with active rheumatoid arthritis: a randomized controlled trial. Clin. Ther. 40, 1752–1764.e1 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shieh, P., Siegrist, M. S., Cullen, A. J. & Bertozzi, C. R. Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes. Proc. Natl Acad. Sci. USA 111, 5456–5461 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritschy, J. M. & Mohler, H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154–194 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sivarao, D. V., Krowicki, Z. K. & Hornby, P. J. Role of GABAA receptors in rat hindbrain nuclei controlling gastric motor function. Neurogastroenterol. Motil. 10, 305–313 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sigel, E. & Steinmann, M. E. Structure, function, and modulation of GABAA receptors. J. Biol. Chem. 287, 40224–40231 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laverty, D. et al. Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature 565, 516–520 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Masiulis, S. et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 565, 454–459 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S. et al. Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities. Nat. Commun. 13, 4582 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasaragod, V. B. et al. The molecular basis of drug selectivity for α5 subunit-containing GABAA receptors. Nat. Struct. Mol. Biol. 30, 1936–1946 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, K. N., Renehan, W. E. & Travagli, R. A. Electrophysiological and morphological heterogeneity of rat dorsal vagal neurones which project to specific areas of the gastrointestinal tract. J. Physiol. 517, 521–532 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libbrecht, S., Van den Haute, C., Malinouskaya, L., Gijsbers, R. & Baekelandt, V. Evaluation of WGA-Cre-dependent topological transgene expression in the rodent brain. Brain Struct. Funct. 222, 717–733 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernard, C. Mémoire sur le Pancréas et sur le Role du Suc Pancréatique dans les Phénomènes Digestifs, Particulièrement dans la Digestion des Matières Grasses Neutres (J.-B. Baillière, 1856).

  • Tao, J. et al. Highly selective brain-to-gut communication via genetically defined vagus neurons. Neuron 109, 2106–2115.e4 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, D. D. & Gunst, S. J. The small GTPase Cdc42 regulates actin polymerization and tension development during contractile stimulation of smooth muscle. J. Biol. Chem. 279, 51722–51728 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berryman, M., Franck, Z. & Bretscher, A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci. 105, 1025–1043 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Travagli, R. A., Gillis, R. A., Rossiter, C. D. & Vicini, S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am. J. Physiol. 260, G531–G536 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Guerciolini, R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord. 21, S12–S23 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Douglas, I. J., Langham, J., Bhaskaran, K., Brauer, R. & Smeeth, L. Orlistat and the risk of acute liver injury: self controlled case series study in UK Clinical Practice Research Datalink. BMJ 346, f1936 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capasso, R. et al. Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology 129, 941–951 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toda, C. et al. UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness. Cell 164, 872–883 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, P. & Lapinsky, D. J. Appendage and scaffold diverse fully functionalized small-molecule probes via a minimalist terminal alkyne-aliphatic diazirine isocyanide. J. Org. Chem. 83, 11245–11253 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, J., Mfuh, A., Amako, Y. & Woo, C. M. Small molecule interactome mapping by photoaffinity labeling reveals binding site hotspots for the NSAIDs. J. Am. Chem. Soc. 140, 4259–4268 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dostalova, Z. et al. Human α1β3γ2L γ-aminobutyric acid type A receptors: high-level production and purification in a functional state. Protein Sci. 23, 157–166 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casanal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360, 376 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments