Eriksson, L., Davies, J. A. & Mayer, J. W. Ion implantation studies in silicon. Science 163, 627â633 (1969).
Street, R. A. Doping and the Fermi energy in amorphous silicon. Phys. Rev. Lett. 49, 1187â1190 (1982).
Hirschman, K. D., Tsybeskov, L., Duttagupta, S. P. & Fauchet, P. M. Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384, 338â341 (1996).
Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28, L2112 (1989).
Nakamura, S., Mukai, T. & Senoh, M. Candelaâclass highâbrightness InGaN/AlGaN doubleâheterostructure blueâlightâemitting diodes. Appl. Phys. Lett. 64, 1687â1689 (1994).
Ponce, F. A. & Bour, D. P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351â359 (1997).
Euvrard, J., Yan, Y. & Mitzi, D. B. Electrical doping in halide perovskites. Nat. Rev. Mater. 6, 531â549 (2021).
Yamashita, Y. et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572, 634â638 (2019).
Guo, H. et al. Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 599, 67â73 (2021).
Ishii, M., Yamashita, Y., Watanabe, S., Ariga, K. & Takeya, J. Doping of molecular semiconductors through proton-coupled electron transfer. Nature 622, 285â291 (2023).
Galli, G. Doping the undopable. Nature 436, 32â33 (2005).
Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86â89 (2005).
Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776â1779 (2008).
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050â6051 (2009).
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643â647 (2012).
Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316â319 (2013).
Stranks, S. D. et al. Electronâhole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341â344 (2013).
Zhang, W. et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015).
de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683â686 (2015).
Tsai, H. et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360, 67â70 (2018).
Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790â795 (2020).
Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762â767 (2022).
Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724â730 (2023).
Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399â1404 (2023).
Zheng, X. et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8, 462â472 (2023).
Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687â692 (2014).
Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222â1225 (2015).
Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391â402 (2015).
Zhao, B. et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783 (2018).
Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249â253 (2018).
Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562, 245 (2018).
Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418â424 (2019).
Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72â77 (2021).
Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594â598 (2021).
Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photonics 16, 637â643 (2022).
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688â694 (2022).
Shen, X. et al. Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes. Joule 7, 272â308 (2023).
Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679â684 (2022).
Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830â835 (2023).
Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421â1426 (2014).
Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53â57 (2020).
Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679â686 (2015).
Tsai, H. et al. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 6, eaay0815 (2020).
Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209â215 (2020).
Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614â620 (2020).
Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545â551 (2023).
Cui, P. et al. Planar pân homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 4, 150â159 (2019).
Xiong, S. et al. Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5, 467â480 (2021).
He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80â86 (2023).
Storm, K. et al. Spatially resolved Hall effect measurement in a single semiconductor nanowire. Nat. Nanotechnol. 7, 718â722 (2012).
Shi, T., Yin, W.-J., Hong, F., Zhu, K. & Yan, Y. Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett. 106, 103902 (2015).
Li, P. et al. Multiple-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chin. Chem. Lett. 33, 1017â1020 (2022).
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360â366 (2020).
Noel, N. K. et al. Lead-free organicâinorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061â3068 (2014).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865â3868 (1996).
Xiong, W. et al. Research data supporting âControllable p- and n-type behaviours in emissive perovskite semiconductorsâ. Figshare https://doi.org/10.6084/m9.figshare.26048218 (2024).