Monday, November 25, 2024
No menu items!
HomeNatureObserving the two-dimensional Bose glass in an optical quasicrystal

Observing the two-dimensional Bose glass in an optical quasicrystal

  • Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Giamarchi, T. & Schulz, H. Anderson localization and interactions in one-dimensional metals. Phys. Rev. B 37, 325–340 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fisher, M. P., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Viebahn, K., Sbroscia, M., Carter, E., Yu, J.-C. & Schneider, U. Matter-wave diffraction from a quasicrystalline optical lattice. Phys. Rev. Lett. 122, 110404 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gautier, R., Yao, H. & Sanchez-Palencia, L. Strongly interacting bosons in a two-dimensional quasicrystal lattice. Phys. Rev. Lett. 126, 110401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J.-Y. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bordia, P. et al. Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems. Phys. Rev. X 7, 041047 (2017).


    Google Scholar
     

  • Michal, V. P., Aleiner, I. L., Altshuler, B. L. & Shlyapnikov, G. V. Finite-temperature fluid–insulator transition of strongly interacting 1D disordered bosons. Proc. Natl Acad. Sci. USA 113, E4455–E4459 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertoli, G., Michal, V., Altshuler, B. & Shlyapnikov, G. Finite-temperature disordered bosons in two dimensions. Phys. Rev. Lett. 121, 030403 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z., Yao, H. & Sanchez-Palencia, L. Thermodynamic phase diagram of two-dimensional bosons in a quasicrystal potential. Phys. Rev. Lett. 130, 220402 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciardi, M., Macrì, T. & Cinti, F. Finite-temperature phases of trapped bosons in a two-dimensional quasiperiodic potential. Phys. Rev. A 105, L011301 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scalettar, R. T., Batrouni, G. G. & Zimanyi, G. T. Localization in interacting, disordered, Bose systems. Phys. Rev. Lett. 66, 3144–3147 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lugan, P. et al. Ultracold Bose gases in 1D disorder: from Lifshits glass to Bose–Einstein condensate. Phys. Rev. Lett. 98, 170403 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Altshuler, B., Krovi, H. & Roland, J. Anderson localization makes adiabatic quantum optimization fail. Proc. Natl Acad. Sci. USA 107, 12446–12450 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Pal, A. & Huse, D. A. Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Khemani, V., Nandkishore, R. & Sondhi, S. L. Nonlocal adiabatic response of a localized system to local manipulations. Nat. Phys. 11, 560–565 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Crowell, P. A., Van Keuls, F. W. & Reppy, J. D. Onset of superfluidity in 4He films adsorbed on disordered substrates. Phys. Rev. B 55, 12620–12634 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys. 7, 239–244 (2011).

    Article 

    Google Scholar
     

  • Yu, R. et al. Bose glass and Mott glass of quasiparticles in a doped quantum magnet. Nature 489, 379–384 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapsch, S., Schollwöck, U. & Zwerger, W. Density matrix renormalization group for disordered bosons in one dimension. Europhys. Lett. 46, 559 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roux, G. et al. Quasiperiodic Bose–Hubbard model and localization in one-dimensional cold atomic gases. Phys. Rev. A 78, 023628 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bissbort, U. & Hofstetter, W. Stochastic mean-field theory for the disordered Bose–Hubbard model. Europhys. Lett. 86, 50007 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Söyler, Ş. G., Kiselev, M., Prokof’ev, N. V. & Svistunov, B. V. Phase diagram of the commensurate two-dimensional disordered Bose–Hubbard model. Phys. Rev. Lett. 107, 185301 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Niederle, A. & Rieger, H. Bosons in a two-dimensional bichromatic quasiperiodic potential: analysis of the disorder in the Bose–Hubbard parameters and phase diagrams. Phys. Rev. A 91, 043632 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gerster, M. et al. Superfluid density and quasi-long-range order in the one-dimensional disordered Bose–Hubbard model. New J. Phys. 18, 015015 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yao, H., Giamarchi, T. & Sanchez-Palencia, L. Lieb–Liniger bosons in a shallow quasiperiodic potential: Bose glass phase and fractal Mott lobes. Phys. Rev. Lett. 125, 060401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C., Safavi-Naini, A. & Capogrosso-Sansone, B. Equilibrium phases of two-dimensional bosons in quasiperiodic lattices. Phys. Rev. A 91, 031604 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Johnstone, D., Öhberg, P. & Duncan, C. W. The mean-field Bose glass in quasicrystalline systems. J. Phys. A 54, 395001 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Gadway, B., Pertot, D., Reeves, J., Vogt, M. & Schneble, D. Glassy behavior in a binary atomic mixture. Phys. Rev. Lett. 107, 145306 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fallani, L., Lye, J., Guarrera, V., Fort, C. & Inguscio, M. Ultracold atoms in a disordered crystal of light: towards a Bose glass. Phys. Rev. Lett. 98, 130404 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deissler, B. et al. Delocalization of a disordered bosonic system by repulsive interactions. Nat. Phys. 6, 354–358 (2010).

    Article 
    CAS 

    Google Scholar
     

  • D’Errico, C. et al. Observation of a disordered bosonic insulator from weak to strong interactions. Phys. Rev. Lett. 113, 095301 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gori, L. et al. Finite-temperature effects on interacting bosonic one-dimensional systems in disordered lattices. Phys. Rev. A 93, 033650 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Pasienski, M., McKay, D., White, M. & DeMarco, B. A disordered insulator in an optical lattice. Nat. Phys. 6, 677–680 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Meldgin, C. et al. Probing the Bose glass–superfluid transition using quantum quenches of disorder. Nat. Phys. 12, 646–649 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Steurer, W. Quasicrystals: What do we know? What do we want to know? What can we know? Acta Crystallogr. A 74, 1–11 (2018).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Abrahams, E., Anderson, P., Licciardello, D. & Ramakrishnan, T. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Szabó, A. & Schneider, U. Mixed spectra and partially extended states in a two-dimensional quasiperiodic model. Phys. Rev. B 101, 014205 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Roati, G. et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895–898 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gottlob, E. & Schneider, U. Hubbard models for quasicrystalline potentials. Phys. Rev. B 107, 144202 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pedri, P. et al. Expansion of a coherent array of Bose–Einstein condensates. Phys. Rev. Lett. 87, 220401 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sbroscia, M. et al. Observing localization in a 2D quasicrystalline optical lattice. Phys. Rev. Lett. 125, 200604 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Braun, S. et al. Emergence of coherence and the dynamics of quantum phase transitions. Proc. Natl Acad. Sci. USA 112, 3641–3646 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wall, M. & Carr, L. Dipole–dipole interactions in optical lattices do not follow an inverse cube power law. New J. Phys. 15, 123005 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Trotzky, S. et al. Suppression of the critical temperature for superfluidity near the Mott transition: validating a quantum simulator. Nat. Phys. 6, 998–1004 (2009).

    Article 

    Google Scholar
     

  • Å trkalj, A., Doggen, E. V. & Castelnovo, C. Coexistence of localization and transport in many-body two-dimensional Aubry–André models. Phys. Rev. B 106, 184209 (2022).

    Article 
    ADS 

    Google Scholar
     

  • De Roeck, W. & Huveneers, F. Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Léonard, J. et al. Probing the onset of quantum avalanches in a many-body localized system. Nat. Phys. 19, 481–485 (2023).

  • Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • d’Errico, C. et al. Feshbach resonances in ultracold 39K. New J. Phys. 9, 223 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fletcher, R. J. et al. Two- and three-body contacts in the unitary Bose gas. Science 355, 377–380 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Etrych, J. et al. Pinpointing Feshbach resonances and testing Efimov universalities in 39K. Phys. Rev. Res. 5, 013174 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wessel, S., Alet, F., Troyer, M. & Batrouni, G. G. Quantum Monte Carlo simulations of confined bosonic atoms in optical lattices. Phys. Rev. A 70, 053615 (2004).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments