Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088â5090 (1977). This seminal paper was the first to recognize archaeaâthen called archaebacteriaâas a separate prokaryotic group from bacteria.
Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221â271 (1987).
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc. Natl Acad. Sci. USA 87, 4576â4579 (1990).
Huet, J., Schnabel, R., Sentenac, A. & Zillig, W. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. EMBO J. 2, 1291â1294 (1983).
Ouzounis, C. & Sander, C. TFIIB, an evolutionary link between the transcription machineries of archaebacteria and eukaryotes. Cell 71, 189â190 (1992).
Myllykallio, H. et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288, 2212â2215 (2000).
Williams, T. A., Cox, C. J., Foster, P. G., SzöllÅsi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138â147 (2020). Using better-fitting models and additional in-depth analyses, this study scrutinized previous studies that reported 3D trees, resulting in robust 2D trees that show a close relationship between Heimdallarchaeia and eukaryotes.
Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992â999 (2023). This study presented the expanding diversity of Asgard archaea, the Hodarchaealesâsister relationship of eukaryotes based on elaborate phylogenomics, the presence of additional ESPs in Asgard genomes and the reconstructed gene content of Asgard ancestral nodes.
Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231â236 (2013).
Betts, H. C. et al. Integrated genomic and fossil evidence illuminates lifeâs early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556â1562 (2018).
Mahendrarajah, T. A. et al. ATP synthase evolution on a cross-braced dated tree of life. Nat. Commun. 14, 7456 (2023).
Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).
Cohen, P. A. & Kodner, R. B. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol. Evol. 37, 246â256 (2022).
Brocks, J. J. et al. Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767â773 (2023).
Porter, S. M. & Riedman, L. A. Frameworks for interpreting the early fossil record of eukaryotes. Annu. Rev. Microbiol. 77, 173â191 (2023).
Koumandou, V. L. et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373â396 (2013).
Donoghue, P. C. J. et al. Defining eukaryotes to dissect eukaryogenesis. Curr. Biol. 33, R919âR929 (2023).
Makarova, K. S., Wolf, Y. I., Mekhedov, S. L., Mirkin, B. G. & Koonin, E. V. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 33, 4626â4638 (2005). This paper provided a first systematic estimate of the number of gene acquisitions, duplications and inventions during eukaryogenesis based on the homology between eukaryotic clusters of orthologues and between eukaryotic and prokaryotic gene clusters.
OâMalley, M. A., Leger, M. M., Wideman, J. G. & Ruiz-Trillo, I. Concepts of the last eukaryotic common ancestor. Nat. Ecol. Evol. 3, 338â344 (2019).
Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711â723 (2017).
Dacks, J. B. et al. The changing view of eukaryogenesisâfossils, cells, lineages and how they all come together. J. Cell Sci. 129, 3695â3703 (2016).
Woese, C. R. & Olsen, G. J. Archaebacterial phylogeny: perspectives on the Urkingdoms. Syst. Appl. Microbiol. 7, 161â177 (1986).
Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331, 184â186 (1988).
Gouy, M. & Li, W.-H. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339, 145â147 (1989).
Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355â9359 (1989).
Baldauf, S. L., Palmer, J. D. & Doolittle, W. F. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc. Natl Acad. Sci. USA 93, 7749â7754 (1996).
Lake, J. A., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81, 3786â3790 (1984). On the basis of ribosome structures, the authors of this study postulated the eocyte hypothesis, in which eukaryotes are most closely related to a specific group of archaea (the 2D tree).
Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74â76 (1992).
Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein sequence data sets. Nat. Genet. 28, 281â285 (2001).
Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283â1287 (2006).
Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356â20361 (2008). Using phylogenetic models that take compositional changes into account, the 2D tree was robustly recovered for the first time in this phylogenomics study.
Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. B 364, 2197â2207 (2009).
Guy, L. & Ettema, T. J. G. The archaeal âTACKâ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580â587 (2011).
Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the archaea and a thaumarchaeal origin for the eukaryotes. Proc. R. Soc. B 278, 1009â1018 (2011).
Lasek-Nesselquist, E. & Gogarten, J. P. The effects of model choice and mitigating bias on the ribosomal tree of life. Mol. Phylogenetics Evol. 69, 17â38 (2013).
Guy, L., Saw, J. H. & Ettema, T. J. G. The archaeal legacy of eukaryotes: a phylogenomic perspective. Cold Spring Harb. Perspect. Biol. 6, a016022 (2014).
Williams, T. A. & Embley, T. M. Archaeal âdark matterâ and the origin of eukaryotes. Genome Biol. Evol. 6, 474â481 (2014).
Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670â6675 (2015).
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173â179 (2015). This paper described the discovery of the first Asgard archaeon, Lokiarchaeum, and showed both its close relationship with eukaryotes and the presence of multiple new ESPs in its genome.
Seitz, K. W., Lazar, C. S., Hinrichs, K.-U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696â1705 (2016).
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353â358 (2017).
Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138â1148 (2019).
Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).
Imachi, H. et al. Isolation of an archaeon at the prokaryoteâeukaryote interface. Nature 577, 519â525 (2020). This study presented the first cultured Asgard archaeon, the lokiarchaeon Candidatus P. syntrophicum, showing remarkable cell physiology (see also ref. 50).
Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553â557 (2021).
Sun, J. et al. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME Commun. 1, 30 (2021).
Aouad, M. et al. A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the archaea. BMC Ecol. Evo. 22, 1 (2022).
Wu, F. et al. Unique mobile elements and scalable gene flow at the prokaryoteâeukaryote boundary revealed by circularized Asgard archaea genomes. Nat. Microbiol. 7, 200â212 (2022).
Xie, R. et al. Expanding Asgard members in the domain of archaea sheds new light on the origin of eukaryotes. Sci. China Life Sci. 65, 818â829 (2022).
Rodrigues-Oliveira, T. et al. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 613, 332â339 (2023).
Da Cunha, V., Gaia, M., Gadelle, D., Nasir, A. & Forterre, P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet. 13, e1006810 (2017).
Stairs, C. W. & Ettema, T. J. G. The archaeal roots of the eukaryotic dynamic actin cytoskeleton. Curr. Biol. 30, R521âR526 (2020).
Klinger, C. M., Spang, A., Dacks, J. B. & Ettema, T. J. G. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol. 33, 1528â1541 (2016).
Vosseberg, J. et al. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat. Ecol. Evol. 5, 92â100 (2021). This paper reconstructed the numerous gene duplications that occurred during eukaryogenesis from phylogenetic trees and inferred their relative timing, also in comparison with gene transfer events, using the branch lengths approach adapted from ref. 127.
SzöllÅsi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901â912 (2013).
Williams, T. A. et al. Parameter estimation and species tree rooting using ALE and GeneRax. Genome Biol. Evol. 15, evad134 (2023).
Akıl, C. & Robinson, R. C. Genomes of Asgard archaea encode profilins that regulate actin. Nature 562, 439â443 (2018). This article is the first of a series of biochemical papers investigating the molecular function of Asgard ESPs by expressing them in heterologous systems, in this case focusing on the interaction between Asgard profilin and eukaryotic actin.
Akıl, C. et al. Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proc. Natl Acad. Sci. USA 117, 19904â19913 (2020).
Survery, S. et al. Heimdallarchaea encodes profilin with eukaryotic-like actin regulation and polyproline binding. Commun. Biol. 4, 1024 (2021).
Akıl, C. et al. Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution. Sci. Adv. 8, eabm2225 (2022).
Leung, K. F., Dacks, J. B. & Field, M. C. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9, 1698â1716 (2008).
Hatano, T. et al. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitinâESCRT machinery. Nat. Commun. 13, 3398 (2022).
Neveu, E., Khalifeh, D., Salamin, N. & Fasshauer, D. Prototypic SNARE proteins are encoded in the genomes of Heimdallarchaeota, potentially bridging the gap between the prokaryotes and eukaryotes. Curr. Biol. 30, 2468â2480 (2020).
Avcı, B. et al. Spatial separation of ribosomes and DNA in Asgard archaeal cells. ISME J. 16, 606â610 (2022).
Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476â1481 (1999).
Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177âR1192 (2017).
Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Mitochondrial origins. Proc. Natl Acad. Sci. USA 82, 4443â4447 (1985).
Fitzpatrick, D. A., Creevey, C. J. & McInerney, J. O. Genome phylogenies indicate a meaningful α-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol. Biol. Evol. 23, 74â85 (2006).
Williams, K. P., Sobral, B. W. & Dickerman, A. W. A robust species tree for the Alphaproteobacteria. J. Bacteriol. 189, 4578â4586 (2007).
Thrash, J. C. et al. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci. Rep. 1, 13 (2011).
Georgiades, K., Madoui, M.-A., Le, P., Robert, C. & Raoult, D. Phylogenomic analysis of Odyssella thessalonicensis fortifies the common origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana mitochondrion. PLoS ONE 6, e24857 (2011).
Sassera, D. et al. Phylogenomic evidence for the presence of a flagellum and cbb3 oxidase in the free-living mitochondrial ancestor. Mol. Biol. Evol. 28, 3285â3296 (2011).
RodrÃguez-Ezpeleta, N. & Embley, T. M. The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria. PLoS ONE 7, e30520 (2012).
Viklund, J., Martijn, J., Ettema, T. J. G. & Andersson, S. G. E. Comparative and phylogenomic evidence that the alphaproteobacterium HIMB59 is not a member of the oceanic SAR11 clade. PLoS ONE 8, e78858 (2013).
Wang, Z. & Wu, M. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS ONE 9, e110685 (2014).
Wang, Z. & Wu, M. An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci. Rep. 5, 7949 (2015).
Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled Alphaproteobacteria. Nature 557, 101â105 (2018). This study recovered several novel marine alphaproteobacterial groups and performed careful phylogenomic analyses to address long-branch and compositional artefacts, revealing the novel Alphaproteobacteriaâsister position of mitochondria.
Fan, L. et al. Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria. Nat. Ecol. Evol. 4, 1213â1219 (2020).
Wang, S. & Luo, H. Dating Alphaproteobacteria evolution with eukaryotic fossils. Nat. Commun. 12, 3324 (2021).
Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253â262 (2022). This study corroborated the Alphaproteobacteriaâsister relationship of mitochondria using a newly developed model that accounts for compositional heterogeneity across sites and branches.
Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Phylogenetic affiliation of mitochondria with Alpha-II and Rickettsiales is an artefact. Nat. Ecol. Evol. 6, 1829â1831 (2022).
Fan, L. et al. Reply to: Phylogenetic affiliation of mitochondria with Alpha-II and Rickettsiales is an artefact. Nat. Ecol. Evol. 6, 1832â1835 (2022).
Ettema, T. J. G. & Andersson, S. G. E. The α-proteobacteria: the Darwin finches of the bacterial world. Biol. Lett. 5, 429â432 (2009).
Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Phil. Trans. R. Soc. B 370, 20140330 (2015).
Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37â41 (1998).
Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).
Moreira, D. & López-GarcÃa, P. Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517â530 (1998).
López-GarcÃa, P. & Moreira, D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655â667 (2020).
Bulzu, P.-A. et al. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 4, 1129â1137 (2019).
Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520â532 (2022).
Muñoz-Gómez, S. A., Wideman, J. G., Roger, A. J. & Slamovits, C. H. The origin of mitochondrial cristae from Alphaproteobacteria. Mol. Biol. Evol. 34, 943â956 (2017).
Gabaldón, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism. Science 301, 609â609 (2003).
Gabaldón, T. & Huynen, M. A. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput. Biol. 3, e219 (2007).
Stairs, C. W., Leger, M. M. & Roger, A. J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Phil. Trans. R. Soc. B 370, 20140326 (2015).
Stairs, C. W. et al. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci. Adv. 6, eabb7258 (2020).
Speijer, D. Alternating terminal electron-acceptors at the basis of symbiogenesis: How oxygen ignited eukaryotic evolution. BioEssays 39, 1600174 (2017).
Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297â354 (2002).
Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451â457 (2013).
Zachar, I., Szilágyi, A., Számadó, S. & Szathmáry, E. Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc. Natl Acad. Sci. USA 115, E1504âE1510 (2018).
Baum, D. A. & Baum, B. An inside-out origin for the eukaryotic cell. BMC Biol. 12, 76 (2014).
Mills, D. B. The origin of phagocytosis in Earth history. Interface Focus 10, 20200019 (2020).
Bremer, N., Tria, F. D. K., Skejo, J., Garg, S. G. & Martin, W. F. Ancestral state reconstructions trace mitochondria but not phagocytosis to the last eukaryotic common ancestor. Genome Biol. Evol. 14, evac079 (2022).
Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009).
Hugoson, E., Guliaev, A., Ammunét, T. & Guy, L. Host adaptation in Legionellales Is 1.9 Ga, coincident with eukaryogenesis. Mol. Biol. Evol. 39, msac037 (2022).
Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The physiology of phagocytosis in the context of mitochondrial origin. Microbiol. Mol. Biol. Rev. 81, e00008âe00017 (2017).
Hampl, V., ÄepiÄka, I. & Eliáš, M. Was the mitochondrion necessary to start eukaryogenesis? Trends Microbiol. 27, 96â104 (2019).
Shiratori, T., Suzuki, S., Kakizawa, Y. & Ishida, K. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat. Commun. 10, 5529 (2019).
Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697â704 (2018).
Cavalier-Smith, T. Archaebacteria and archezoa. Nature 339, 100â101 (1989).
Embley, T. M. & Hirt, R. P. Early branching eukaryotes? Curr. Opin. Genet. Dev. 8, 624â629 (1998).
Ettema, T. J. G. Evolution: mitochondria in the second act. Nature 531, 39â40 (2016).
Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929â934 (2010).
Lane, N. Energetics and genetics across the prokaryoteâeukaryote divide. Biol. Direct 6, 35 (2011).
Booth, A. & Doolittle, W. F. Eukaryogenesis, how special really? Proc. Natl Acad. Sci. USA 112, 10278â10285 (2015).
Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690â15695 (2015).
Koonin, E. V. Energetics and population genetics at the root of eukaryotic cellular and genomic complexity. Proc. Natl Acad. Sci. USA 112, 15777â15778 (2015).
Lynch, M. & Marinov, G. K. Membranes, energetics, and evolution across the prokaryoteâeukaryote divide. eLife 6, e20437 (2017).
Lane, N. Serial endosymbiosis or singular event at the origin of eukaryotes? J. Theor. Biol. 434, 58â67 (2017).
Chiyomaru, K. & Takemoto, K. Revisiting the hypothesis of an energetic barrier to genome complexity between eukaryotes and prokaryotes. R. Soc. Open Sci. 7, 191859 (2020).
Lane, N. How energy flow shapes cell evolution. Curr. Biol. 30, R471âR476 (2020).
Schavemaker, P. E. & Muñoz-Gómez, S. A. The role of mitochondrial energetics in the origin and diversification of eukaryotes. Nat. Ecol. Evol. 6, 1307â1317 (2022).
Volland, J.-M. et al. A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles. Science 376, 1453â1458 (2022).
Greening, C. & Lithgow, T. Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677â689 (2020).
Küper, U., Meyer, C., Müller, V., Rachel, R. & Huber, H. Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. Proc. Natl Acad. Sci. USA 107, 3152â3156 (2010).
Wiegand, S., Jogler, M. & Jogler, C. On the maverick planctomycetes. FEMS Microbiol. Rev. 42, 739â760 (2018).
Katayama, T. et al. Isolation of a member of the candidate phylum âAtribacteriaâ reveals a unique cell membrane structure. Nat. Commun. 11, 6381 (2020).
Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101â104 (2016). This study presented a novel approach to use phylogenetic branch lengths to infer the relative timing of gene acquisitions during eukaryogenesis, pointing to rampant bacterial gene flow to stem eukaryotes prior to the proto-mitochondrial acquisition.
Gabaldón, T. Relative timing of mitochondrial endosymbiosis and the âpre-mitochondrial symbiosesâ hypothesis. IUBMB Life 70, 1188â1196 (2018).
Vosseberg, J., Schinkel, M., Gremmen, S. & Snel, B. The spread of the first introns in proto-eukaryotic paralogs. Commun. Biol. 5, 476 (2022).
Susko, E., Steel, M. & Roger, A. J. Conditions under which distributions of edge length ratios on phylogenetic trees can be used to order evolutionary events. J. Theor. Biol. 526, 110788 (2021).
Tricou, T., Tannier, E. & de Vienne, D. M. Ghost lineages can invalidate or even reverse findings regarding gene flow. PLoS Biol. 20, e3001776 (2022).
Fritz-Laylin, L. K. et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140, 631â642 (2010).
Huynen, M. A., Duarte, I. & Szklarczyk, R. Loss, replacement and gain of proteins at the origin of the mitochondria. Biochim. Biophys. Acta 1827, 224â231 (2013).
Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123â135 (2004).
Karnkowska, A. et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274â1284 (2016).
Gabaldón, T. et al. Origin and evolution of the peroxisomal proteome. Biol. Direct 1, 8 (2006).
Rochette, N. C., Brochier-Armanet, C. & Gouy, M. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol. Biol. Evol. 31, 832â845 (2014).
Irwin, N. A. T., Pittis, A. A., Richards, T. A. & Keeling, P. J. Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat. Microbiol. 7, 327â336 (2022).
Ku, C. et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524, 427â432 (2015).
Gould, S. B., Garg, S. G. & Martin, W. F. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol. 24, 525â534 (2016).
Coleman, G. A., Pancost, R. D. & Williams, T. A. Investigating the origins of membrane phospholipid biosynthesis genes using outgroup-free rooting. Genome Biol. Evol. 11, 883â898 (2019).
Volker, C. & Lupas, A. N. in The ProteasomeâUbiquitin Protein Degradation Pathway (eds Zwickl, P. & Baumeister, W.) 1â22 (Springer, 2002).
Vosseberg, J., Stolker, D., von der Dunk, S. H. A. & Snel, B. Integrating phylogenetics with intron positions illuminates the origin of the complex spliceosome. Mol. Biol. Evol. 40, msad011 (2023).
Tromer, E. C., Hooff, J. J. E., van, Kops, G. J. P. L. & Snel, B. Mosaic origin of the eukaryotic kinetochore. Proc. Natl Acad. Sci. USA 116, 12873â12882 (2019).
Findeisen, P. et al. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol. Evol. 6, 2274â2288 (2014).
Muñoz-Gómez, S. A., Bilolikar, G., Wideman, J. G. & Geiler-Samerotte, K. Constructive neutral evolution 20 years later. J. Mol. Evol. 89, 172â182 (2021).
Dacks, J. B. & Field, M. C. Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci. 120, 2977â2985 (2007).
Dacks, J. B. & Field, M. C. Evolutionary origins and specialisation of membrane transport. Curr. Opin. Cell Biol. 53, 70â76 (2018).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583â589 (2021).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871â876 (2021).
Ekman, D., Björklund, à . K., Frey-Skött, J. & Elofsson, A. Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J. Mol. Biol. 348, 231â243 (2005).
Liu, J. & Rost, B. Comparing function and structure between entire proteomes. Protein Sci. 10, 1970â1979 (2001).
Xue, B., Dunker, A. K. & Uversky, V. N. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137â149 (2012).
Colnaghi, M., Lane, N. & Pomiankowski, A. Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic sex. eLife 9, e58873 (2020).
van Dijk, B., Bertels, F., Stolk, L., Takeuchi, N. & Rainey, P. B. Transposable elements promote the evolution of genome streamlining. Phil. Trans. R. Soc. B 377, 20200477 (2022).
Colnaghi, M., Lane, N. & Pomiankowski, A. Repeat sequences limit the effectiveness of lateral gene transfer and favored the evolution of meiotic sex in early eukaryotes. Proc. Natl Acad. Sci. USA 119, e2205041119 (2022).
Gilbert, W. Why genes in pieces? Nature 271, 501â501 (1978).
Liu, M. & Grigoriev, A. Protein domains correlate strongly with exons in multiple eukaryotic genomes â evidence of exon shuffling? Trends Genet. 20, 399â403 (2004).
Grau-Bové, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 6, e26036 (2017).
Ocaña-Pallarès, E. et al. Divergent genomic trajectories predate the origin of animals and fungi. Nature 609, 747â753 (2022).
Méheust, R. et al. Formation of chimeric genes with essential functions at the origin of eukaryotes. BMC Biol. 16, 30 (2018).
Tamarit, D. et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst. Appl. Microbiol. 47, 126525 (2024).
Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361â375 (2005).
Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428â444 (2020).
Steenwyk, J. L., Li, Y., Zhou, X., Shen, X.-X. & Rokas, A. Incongruence in the phylogenomics era. Nat. Rev. Genet. 24, 834â850 (2023).
Fleming, J. F., Valero-Gracia, A. & Struck, T. H. Identifying and addressing methodological incongruence in phylogenomics: a review. Evol. Appl. 16, 1087â1104 (2023).
Foster, P. G. et al. Recoding amino acids to a reduced alphabet may increase or decrease phylogenetic accuracy. Syst. Biol. 72, 723â737 (2023).
Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139â2150 (2007).
Viklund, J., Ettema, T. J. G. & Andersson, S. G. E. Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol. Biol. Evol. 29, 599â615 (2012).