Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913â915 (1987).
Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234â238 (2012).
Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695â697 (1996).
Kozlov, V. G., BuloviÄ, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362â364 (1997).
Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272â1295 (2007).
Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615â1628 (2021).
Hail, C. U. et al. Nanoprinting organic molecules at the quantum level. Nat. Commun. 10, 1880 (2019).
Carter, K. P., Young, A. M. & Palmer, A. E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 114, 4564â4601 (2014).
Yang, Y., Zhao, Q., Feng, W. & Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev. 113, 192â270 (2013).
Cosco, E. D. et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angew. Chem. Int. Ed. 56, 13126â13129 (2017).
Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 29, 4332â4353 (2009).
Lane, P. A. et al. Origin of electrophosphorescence from a doped polymer light emitting diode. Phys. Rev. B 63, 235206 (2001).
Wang, H. et al. Doped organic crystals with high efficiency, color-tunable emission toward laser application. Cryst. Growth Des. 9, 4945â4950 (2009).
Mischok, A., Hillebrandt, S., Kwon, S. & Gather, M. C. Highly efficient polaritonic light-emitting diodes with angle-independent narrowband emission. Nat. Photon. 17, 393â400 (2023).
Vietze, U. et al. Zeolite-dye microlasers. Phys. Rev. Lett. 81, 4628â4631 (1998).
Yu, J. et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat. Commun. 4, 2719 (2013).
Fang, Q. et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5, 4503 (2014).
Huang, Y. et al. Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat. Commun. 10, 169 (2019).
Hua, B. et al. Supramolecular solid-state microlaser constructed from pillar[5]arene-based hostâguest complex microcrystals. J. Am. Chem. Soc. 140, 15651â15654 (2018).
Kim, D.-H. et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photon. 12, 98â104 (2018).
Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467â469 (1994).
Gao, Y. et al. Molecular engineering of organicâinorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151â1157 (2019).
Smith, M. D., Connor, B. A. & Karunadasa, H. I. Tuning the luminescence of layered halide perovskites. Chem. Rev. 119, 3104â3139 (2019).
Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482â500 (2020).
Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230â2291 (2021).
Gong, X. et al. Electronâphonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550â556 (2018).
Passarelli, J. V. et al. Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation design. J. Am. Chem. Soc. 140, 7313â7323 (2018).
Yan, L., Gloor, C. J., Moran, A. M. & You, W. Non-covalent interactions involving Ï effect between organic cations in low-dimensional organic/inorganic hybrid perovskites. Appl. Phys. Lett. 122, 240501 (2023).
Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699â704 (2016).
Wang, K. et al. Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023).
Tsai, H. et al. High-efficiency two-dimensional RuddlesdenâPopper perovskite solar cells. Nature 536, 312â316 (2016).
Feng, J. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 1, 404â410 (2018).
Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53â57 (2020).
Era, M., Maeda, K. & Tsutsui, T. Enhanced phosphorescence from naphthalene-chromophore incorporated into lead bromide-based layered perovskite having organicâinorganic superlattice structure. Chem. Phys. Lett. 296, 417â420 (1998).
Chondroudis, K. & Mitzi, D. B. Electroluminescence from an organicâinorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11, 3028â3030 (1999).
Braun, M., Tuffentsammer, W., Wachtel, H. & Wolf, H. C. Pyrene as emitting chromophore in organicâinorganic lead halide-based layered perovskites with different halides. Chem. Phys. Lett. 307, 373â378 (1999).
Ema, K., Inomata, M., Kato, Y., Kunugita, H. & Era, M. Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials. Phys. Rev. Lett. 100, 257401 (2008).
Karl, M. et al. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 9, 1525 (2018).
Silver, S., Yin, J., Li, H., Brédas, J.-L. & Kahn, A. Characterization of the valence and conduction band levels of n = 1 2D perovskites: a combined experimental and theoretical investigation. Adv. Energy Mater. 8, 1703468 (2018).
Grynâova, G., Lin, K.-H. & Corminboeuf, C. Read between the molecules: computational insights into organic semiconductors. J. Am. Chem. Soc. 140, 16370â16386 (2018).
Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Design, structure, and optical properties of organicâinorganic perovskites containing an oligothiophene chromophore. Inorg. Chem. 38, 6246â6256 (1999).
Chung, C., Lee, M. & Choe, E. K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 58, 417â420 (2004).
Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 40, 5361â5388 (2011).
Gómez-Castaño, M. et al. Energy transfer and interference by collective electromagnetic coupling. Nano Lett. 19, 5790â5795 (2019).
Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671â675 (2018).
Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535â542 (2021).
Spano, F. C., Kuklinski, J. R. & Mukamel, S. Temperature-dependent superradiant decay of excitons in small aggregates. Phys. Rev. Lett. 65, 211â214 (1990).
Blach, D. D. et al. Superradiance and exciton delocalization in perovskite quantum dot superlattices. Nano Lett. 22, 7811â7818 (2022).
Findik, G. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676â680 (2021).
Dursun, I. et al. Temperature-dependent optical and structural properties of chiral two-dimensional hybrid lead-iodide perovskites. J. Phys. Chem. C 127, 15423â15434 (2023).
Chen, H. et al. Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Sci. Adv. 6, eaay4045 (2020).
Aubrey, M. L. et al. Directed assembly of layered perovskite heterostructures as single crystals. Nature 597, 355â359 (2021).
Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902â908 (2022).
Yuan, Z. et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017).
Zhou, C. et al. Blue emitting single crystalline assembly of metal halide clusters. J. Am. Chem. Soc. 140, 13181â13184 (2018).
Hestand, N. J. & Spano, F. C. Molecular aggregate photophysics beyond the Kasha model: novel design principles for organic materials. Acc. Chem. Res. 50, 341â350 (2017).
Kaufmann, C., Bialas, D., Stolte, M. & Würthner, F. Discrete Ï-stacks of perylene bisimide dyes within folda-dimers: insight into long- and short-range exciton coupling. J. Am. Chem. Soc. 140, 9986â9995 (2018).
Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614â620 (2020).
Ilavsky, J. Nika: software for two-dimensional data reduction. J. Appl. Crystallogr. 45, 324â328 (2012).
Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623â11627 (1994).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297â3305 (2005).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580â592 (2012).
Brunner, K., Tortschanoff, A., Warmuth, C., Bässler, H. & Kauffmann, H. F. Site torsional motion and dispersive excitation hopping transfer in Ï-conjugated polymers. J. Phys. Chem. B 104, 3781â3790 (2000).
Meskers, S. C. J., Hübner, J., Oestreich, M. & Bässler, H. Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: experiment and Monte Carlo simulations. J. Phys. Chem. B 105, 9139â9149 (2001).