Saturday, November 2, 2024
No menu items!
HomeNatureSperm-origin paternal effects on root stem cell niche differentiation

Sperm-origin paternal effects on root stem cell niche differentiation

  • Anderson, S. N. et al. The zygotic transition is initiated in unicellular plant zygotes with asymmetric activation of parental genomes. Dev. Cell 43, 349–358 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Autran, D. et al. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145, 707–719 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nodine, M. D. & Bartel, D. P. Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482, 94–97 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vielle-Calzada, J.-P., Baskar, R. & Grossniklaus, U. Delayed activation of the paternal genome during seed development. Nature 404, 91–94 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weijers, D., Geldner, N., Offringa, R. & Jürgens, G. Early paternal gene activity in Arabidopsis. Nature 414, 709–710 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, P. et al. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Dev. Cell 49, 882–893 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, P., Zhou, X., Zheng, Y., Ren, Y. & Sun, M. X. Equal parental contribution to the transcriptome is not equal control of embryogenesis. Nat. Plants 6, 1354–1364 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dresselhaus, T., Sprunck, S. & Wessel, G. M. Fertilization mechanisms in flowering plants. Curr. Biol. 26, R125–R139 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, A., Shi, C., Zhang, L. & Sun, M. X. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. Front. Plant Sci. 5, 729 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perlman, R. L. & Govindaraju, D. R. Archibald E. Garrod: the father of precision medicine. Genet. Med. 18, 1088–1089 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tavares, R. S. et al. Evaluation of human sperm chromatin status after selection using a modified Diff-Quik stain indicates embryo quality and pregnancy outcomes following in vitro fertilization. Andrology 1, 830–837 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lasiene, K. et al. Evaluation of morphological criteria of sperm quality before in vitro fertilization and intracytoplasmic sperm injection. Pol. J. Vet. Sci. 16, 773–785 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raad, G. et al. Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress, and mitochondrial activity: a prospective study. Andrology 9, 1549–1559 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, X. et al. Fertilized egg cells secrete endopeptidases to avoid polytubey. Nature 592, 433–437 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayer, M. et al. Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323, 1485–1488 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. & Sun, M. X. H3K27 methylation regulates the fate of two cell lineages in male gametophytes. Plant Cell 34, 2989–3005 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borg, M. et al. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23, 534–549 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L., Ko, E. E., Tran, J. & Qiao, H. TREE1-EIN3-mediated transcriptional repression inhibits shoot growth in response to ethylene. Proc. Natl Acad. Sci. USA 117, 29178–29189 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcıa-Aguilar, M. & Gillmor, C. S. Zygotic genome activation and imprinting parent-of-origin gene regulation in plant embryogenesis. Curr. Opin. Plant Biol. 27, 29–35 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Costa, L. M. et al. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344, 168–172 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. EGG CELL 1 contributes to egg-cell-dependent preferential fertilization in Arabidopsis. Nat. Plants 10, 268–282 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. A Jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177, 942–956 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farmer, E. E., Caldelari, D., Pearce, C., Walker-Simmons, M. K. & Ryan, C. A. Diethyldithiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiol. 106, 337–342 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Stintzi, A. & Browse, J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl Acad. Sci. USA 97, 10625–10630 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, C. et al. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by Jasmonate in Arabidopsis. Plant Physiol. 151, 1412–1420 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haecker, A. et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657–668 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rademacher, E. H. et al. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev. Cell 22, 211–222 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koszegi, D. et al. Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J. 67, 280–291 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Plant egg cell fate determination depends on its exact position in female gametophyte. Proc. Natl Acad. Sci. USA 118, e2017488118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crawford, B. C. W. et al. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347, 655–659 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Dewitte, W. et al. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc. Natl Acad. Sci. USA 104, 14537–14542 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou, L., He, K., Peng, J., Wang, X. & Mao, T. The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA. Nat. Commun. 12, 2181 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. et al. A molecular framework for plant regeneration. Science 311, 385–388 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugimoto, K., Jiao, Y. & Meyerowitz, E. M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 18, 463–471 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng, D. W.-K., Chandrasekharan, M. B. & Hall, T. C. The 5′ UTR negatively regulates quantitative and spatial expression from the ABI3 promoter. Plant Mol. Biol. 54, 25–38 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sprunck, S. et al. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338, 1093–1097 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Siklenka, K. et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350, aab2006 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rando, O. J. & Simmons, R. A. I’m eating for two: parental dietary effects on offspring metabolism. Cell 161, 93–105 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, P., Shi, C., Wang, L. & Sun, M. X. The parental contributions to early plant embryogenesis and the concept of maternal-to-zygotic transition in plants. Curr. Opin. Plant Biol. 65, 102144 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Toro-De Leon, G., Garcia-Aguilar, M. & Gillmor, C. S. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 514, 624–627 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Du, Y. et al. Spatially expressed WIP genes control Arabidopsis embryonic root development. Nat. Plants 8, 635–645 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, L. et al. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol. Plant 8, 1820–1823 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. Proc. Natl Acad. Sci. USA 112, 12432–12437 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X., Shi, C., Zhao, P. & Sun, M. Isolation of living apical and basal cell lineages of early proembryos for transcriptome analysis. Plant Reprod. 32, 105–111 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments