Suzuki, W. A. Associative learning signals in the brain. Prog. Brain Res. 169, 305â320 (2008).
Osada, T., Adachi, Y., Kimura, H. M. & Miyashita, Y. Towards understanding of the cortical network underlying associative memory. Phil. Trans. R. Soc. B 363, 2187â2199 (2008).
Ozawa, T. & Johansen, J. P. Learning rules for aversive associative memory formation. Curr. Opin. Neurobiol. 49, 148â157 (2018).
Igarashi, K. M., Lee, J. Y. & Jun, H. Reconciling neuronal representations of schema, abstract task structure, and categorization under cognitive maps in the entorhinalâhippocampalâfrontal circuits. Curr. Opin. Neurobiol. 77, 102641 (2022).
Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195â231 (1992).
Buzsaki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampalâentorhinal system. Nat. Neurosci. 16, 130â138 (2013).
Morris, R. G. in The Hippocampus Book (ed. P. Andersen, P.) 581â714 (Oxford Univ. Press, 2007).
Eichenbaum, H. On the integration of space, time, and memory. Neuron 95, 1007â1018 (2017).
OâKeefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).
Moser, E. I., Moser, M. B. & Roudi, Y. Network mechanisms of grid cells. Phil. Trans. R. Soc. B 369, 20120511 (2014).
Price, J. L. An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J. Comp. Neurol. 150, 87â108 (1973).
Burwell, R. D. The parahippocampal region: corticocortical connectivity. Ann. N. Y. Acad. Sci. 911, 25â42 (2000).
Igarashi, K. M. et al. Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J. Neurosci. 32, 7970â7985 (2012).
Young, B. J., Otto, T., Fox, G. D. & Eichenbaum, H. Memory representation within the parahippocampal region. J. Neurosci. 17, 5183â5195 (1997).
Deshmukh, S. S. & Knierim, J. J. Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front. Behav. Neurosci. 5, 69 (2011).
Tsao, A., Moser, M. B. & Moser, E. I. Traces of experience in the lateral entorhinal cortex. Curr. Biol. 23, 399â405 (2013).
Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B. & Moser, E. I. Coordination of entorhinalâhippocampal ensemble activity during associative learning. Nature 510, 143â147 (2014).
Lee, J. Y. et al. Dopamine facilitates associative memory encoding in the entorhinal cortex. Nature 598, 321â326 (2021).
Martin, C., Beshel, J. & Kay, L. M. An olfacto-hippocampal network is dynamically involved in odor-discrimination learning. J. Neurophysiol. 98, 2196â2205 (2007).
Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85â88 (2012).
Luo, W. et al. Acquiring new memories in neocortex of hippocampal-lesioned mice. Nat. Commun. 13, 1601 (2022).
Insausti, R., Herrero, M. T. & Witter, M. P. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7, 146â183 (1997).
Witter, M. P. & Amaral, D. G. in The Rat Nervous System 3rd edn (ed. Paxinos, G.) 635â704 (Elsevier, 2004).
Zingg, B. et al. Neural networks of the mouse neocortex. Cell 156, 1096â1111 (2014).
Jun, H. et al. Disrupted place cell remapping and impaired grid cells in a knockin model of Alzheimerâs disease. Neuron 107, 1095â1112.e6 (2020).
Issa, J. B., Radvansky, B. A., Xuan, F. & Dombeck, D. A. Lateral entorhinal cortex subpopulations represent experiential epochs surrounding reward. Nat. Neurosci. 27, 536â546 (2024).
Mulder, A. B., Nordquist, R., Orgut, O. & Pennartz, C. M. Plasticity of neuronal firing in deep layers of the medial prefrontal cortex in rats engaged in operant conditioning. Prog. Brain Res. 126, 287â301 (2000).
Rushworth, M. F., Noonan, M. P., Boorman, E. D., Walton, M. E. & Behrens, T. E. Frontal cortex and reward-guided learning and decision-making. Neuron 70, 1054â1069 (2011).
Euston, D. R., Gruber, A. J. & McNaughton, B. L. The role of medial prefrontal cortex in memory and decision making. Neuron 76, 1057â1070 (2012).
Anastasiades, P. G. & Carter, A. G. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 44, 550â563 (2021).
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335â346 (2020).
Konishi, M. I., Igarashi, K. M. & Miura, K. Biologically plausible local synaptic learning rules robustly implement deep supervised learning. Front. Neurosci. 17, 1160899 (2023).
Hasegawa, I., Fukushima, T., Ihara, T. & Miyashita, Y. Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. Science 281, 814â818 (1998).
Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699â703 (1999).
Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119â130 (2005).
Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891â895 (2011).
Eichenbaum, H. Prefrontalâhippocampal interactions in episodic memory. Nat. Rev. Neurosci. 18, 547â558 (2017).
Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73â78 (2017).
Tse, D. et al. Schemas and memory consolidation. Science 316, 76â82 (2007).
Baraduc, P., Duhamel, J. R. & Wirth, S. Schema cells in the macaque hippocampus. Science 363, 635â639 (2019).
Simons, J. S. & Spiers, H. J. Prefrontal and medial temporal lobe interactions in long-term memory. Nat. Rev. Neurosci. 4, 637â648 (2003).
Ito, H. T. Prefrontalâhippocampal interactions for spatial navigation. Neurosci. Res. 129, 2â7 (2018).
Spellman, T. et al. Hippocampalâprefrontal input supports spatial encoding in working memory. Nature 522, 309â314 (2015).
Place, R., Farovik, A., Brockmann, M. & Eichenbaum, H. Bidirectional prefrontalâhippocampal interactions support context-guided memory. Nat. Neurosci. 19, 992â994 (2016).
Ito, H. T., Zhang, S. J., Witter, M. P., Moser, E. I. & Moser, M. B. A prefrontalâthalamoâhippocampal circuit for goal-directed spatial coding. Nature https://doi.org/10.1038/nature14396 (2015).
Feierstein, C. E., Quirk, M. C., Uchida, N., Sosulski, D. L. & Mainen, Z. F. Representation of spatial goals in rat orbitofrontal cortex. Neuron 51, 495â507 (2006).
Wang, P. Y. et al. Transient and persistent representations of odor value in prefrontal cortex. Neuron 108, 209â224.e6 (2020).
Basu, R. et al. The orbitofrontal cortex maps future navigational goals. Nature 599, 449â452 (2021).
Jun, H., Chavez, J., Bramian, A. & Igarashi, K. M. Protocol for remapping of place cells in disease mouse models. STAR Protoc. 2, 100759 (2021).
Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 20, 363â366 (2013).