Monday, November 25, 2024
No menu items!
HomeNatureLow-latitude mesopelagic nutrient recycling controls productivity and export

Low-latitude mesopelagic nutrient recycling controls productivity and export

  • Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Global Biogeochem. Cycles 30, 1756–1777 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Carr, M. E. et al. A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res. II: Top. Stud. Oceanogr. 53, 741–770 (2006).

    ADS 

    Google Scholar
     

  • Westberry, T. K., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon‐based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem. Cycles 22, e2007GB003078 (2008).

  • Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Global Biogeochem. Cycles 36, e2021GB007083 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Schlitzer, R. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. Geophys. Monogr. Am. Geophys. Union 114, 107–124 (2000).

    ADS 

    Google Scholar
     

  • Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1142 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • State of World Fisheries and Aquaculture: 2012 (FAO, 2012).

  • Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).

    PubMed 

    Google Scholar
     

  • Fine, R. A., Maillet, K. A., Sullivan, K. F. & Willey, D. Circulation and ventilation flux of the Pacific Ocean. J. Geophys. Res. Oceans 106, 22159–22178 (2001).

    ADS 

    Google Scholar
     

  • Aumont, O., Orr, J. C., Monfray, P., Madec, G. & Maier‐Reimer, E. Nutrient trapping in the equatorial Pacific: the ocean circulation solution. Global Biogeochem. Cycles 13, 351–369 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Toyama, K. et al. Large reemergence of anthropogenic carbon into the ocean’s surface mixed layer sustained by the ocean’s overturning circulation. J. Clim. 30, 8615–8631 (2017).

    ADS 

    Google Scholar
     

  • Primeau, F. W., Holzer, M. & DeVries, T. Southern Ocean nutrient trapping and the efficiency of the biological pump. J. Geophys. Res. Oceans 118, 2547–2564 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Herraiz-Borreguero, L. & Rintoul, S. R. Subantarctic mode water: distribution and circulation. Ocean Dyn. 61, 103–126 (2011).

    ADS 

    Google Scholar
     

  • Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).

  • Danabasoglu, G. et al. The community Earth system model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    ADS 

    Google Scholar
     

  • Sellar, A. A. et al. UKESM1: description and evaluation of the UK Earth system model. J. Adv. Model. Earth Syst. 11, 4513–4558 (2019).

    ADS 

    Google Scholar
     

  • Ziehn, T. et al. The Australian earth system model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).


    Google Scholar
     

  • Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).

    ADS 

    Google Scholar
     

  • Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • McCreary, J. P. & Lu, P. Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J. Phys. Oceanogr. 24, 466–497 (1994).


    Google Scholar
     

  • Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).

    ADS 

    Google Scholar
     

  • Lauvset, S. K. et al. A new global interior ocean mapped climatology: the 1° x 1° GLODAP version 2. Earth Syst. Sci. Data 8, 325–340 (2016).

    ADS 

    Google Scholar
     

  • DeVries, T. The oceanic anthropogenic CO2 sink: storage, air‐sea fluxes, and transports over the industrial era. Global Biogeochem. Cycles 28, 631–647 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Redfield, A. C. The influence of organisms on the composition of seawater. The Sea 2, 26–77 (1963).


    Google Scholar
     

  • Aumont, O., Ethe, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Talley, L. D. Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr. 33, 530–560 (2003).

    ADS 

    Google Scholar
     

  • Sen Gupta, A. et al. Future changes to the Indonesian throughflow and Pacific circulation: the differing role of wind and deep circulation changes. Geophys. Res. Lett. 43, 1669–1678 (2016).

    ADS 

    Google Scholar
     

  • Feng, M., Zhang, X. B., Sloyan, B. & Chamberlain, M. Contribution of the deep ocean to the centennial changes of the Indonesian throughflow. Geophys. Res. Lett. 44, 2859–2867 (2017).

    ADS 

    Google Scholar
     

  • Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J. & Slater, R. D. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the meridional overturning circulation. Biogeosciences 7, 3549–3568 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Séférian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95–119 (2020).

    PubMed 

    Google Scholar
     

  • Bopp, L. et al. Diazotrophy as a key driver of the response of marine net primary productivity to climate change. Biogeosciences 19, 4267–4285 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Long, M. C. et al. Simulations with the Marine Biogeochemistry Library (MARBL). J. Adv. Model. Earth Syst. 13, e2021MS002647 (2021).

  • Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Global Biogeochem. Cycles 32, 858–876 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Cooley, S. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) Ch. 3 (Cambridge Univ. Press, 2022).

  • Carter, B. R. et al. Preformed properties for marine organic matter and carbonate mineral cycling quantification. Global Biogeochem. Cycles 35, e2020GB006623 (2021).

  • Broecker, W. S. “NO”, a conservative water-mass tracer. Earth Planet. Sci. Lett. 23, 100–107 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63, 813–839 (2005).

    CAS 

    Google Scholar
     

  • Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles 8, 65–80 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. Oceans 90, 6907–6924 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • Paulmier, A., Kriest, I. & Oschlies, A. Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models. Biogeosciences 6, 923–935 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Aumont, O. & Rodgers, K. Low-latitude mesopelagic nutrient recycling controls on productivity and export. Zenodo https://doi.org/10.5281/zenodo.10554639 (2024).

  • Rodgers, K. & Aumont, O. Analysis files for “Low-latitude mesopelagic nutrient recycling controls productivity and export”. Zenodo https://doi.org/10.5281/zenodo.11617863 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments