Sunday, November 24, 2024
No menu items!
HomeNatureThe periosteum provides a stromal defence against cancer invasion into the bone

The periosteum provides a stromal defence against cancer invasion into the bone

  • Duhamel, H. L. Sur une racine qui a la faculte de triendre en rouge les os des animaux vivants. Mem. Acad. R. Sci. Paris 52, 1–13 (1739).


    Google Scholar
     

  • Rana, R. S., Wu, J. S. & Eisenberg, R. L. Periosteal reaction. Am. J. Roentgenol. 193, W259–W272 (2009).

    Article 

    Google Scholar
     

  • Vilchez Mercedes, S. A. et al. Decoding leader cells in collective cancer invasion. Nat. Rev. Cancer 21, 592–604 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 4, 17105 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Winer, A., Adams, S. & Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther. 17, 1147–1155 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, H. W., Defamie, V., Waterhouse, P. & Khokha, R. TIMPs: versatile extracellular regulators in cancer. Nat. Rev. Cancer 17, 38–53 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hermann, C. D. et al. TIMP1 expression underlies sex disparity in liver metastasis and survival in pancreatic cancer. J. Exp. Med. 218, e20210911 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimoda, M. et al. Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat. Cell Biol. 16, 889–901 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grünwald, B. et al. Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology 151, 1011–1024.e1017 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Osawa, Y. et al. Liver acid sphingomyelinase inhibits growth of metastatic colon cancer. J. Clin. Invest. 123, 834–843 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 6, 93 (2020).

  • Tsukasaki, M. et al. Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nat. Commun. 13, 4166 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. et al. CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion. J. Clin. Invest. 129, 5381–5399 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takaoka, M. et al. Ha-RasG12V induces senescence in primary and immortalized human esophageal keratinocytes with p53 dysfunction. Oncogene 23, 6760–6768 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakagawa, H. et al. The targeting of the cyclin D1 oncogene by an Epstein–Barr virus promoter in transgenic mice causes dysplasia in the tongue, esophagus and forestomach. Oncogene 14, 1185–1190 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 16, 1260–1270 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto, K., Sato, S., Ochi, H., Takeda, S. & Futakuchi, M. Calvarial bone implantation and. Bio Protoc. 9, e3151 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto, K. et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc. Natl Acad. Sci. USA 115, 2204–2209 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Network, C. G. A. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsukasaki, M. & Takayanagi, H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 19, 626–642 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otani, S. et al. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma. Oncogene 41, 683–691 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Julien, A. et al. Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury. J. Bone Miner. Res. 37, 1545–1561 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eckfeld, C. et al. TIMP-1 is a novel ligand of amyloid precursor protein and triggers a proinflammatory phenotype in human monocytes. J. Cell Biol. 222, e202206095 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirasawa, T. & Kuratani, S. Evolution of the vertebrate skeleton: morphology, embryology, and development. Zoological Lett. 1, 2 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimada, A. et al. Trunk exoskeleton in teleosts is mesodermal in origin. Nat. Commun. 4, 1639 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kajita, M. et al. Filamin acts as a key regulator in epithelial defence against transformed cells. Nat. Commun. 5, 4428 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L. A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Hogan, C. et al. Characterization of the interface between normal and transformed epithelial cells. Nat. Cell Biol. 11, 460–467 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, T. et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130, 811–823 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsukasaki, M. et al. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat. Metab. 2, 1382–1390 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asano, T. et al. Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat. Metab. 1, 868–875 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tsukasaki, M. et al. Host defense against oral microbiota by bone-damaging T cells. Nat. Commun. 9, 701 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsukasaki, M. et al. OPG production matters where it happened. Cell Rep. 32, 108124 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 1, e90 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Galaxy Community The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345–W351 (2022).

    Article 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, M. et al. ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nat. Immunol. 23, 1330–1341 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akimoto, M., Maruyama, R., Takamaru, H., Ochiya, T. & Takenaga, K. Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment. Nat. Commun. 7, 13589 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazu. nakamurakazu/Stromal-defence-against-cancer-by-the-periosteum: stromal defence against cancer by the periosteum. Zenodo https://doi.org/10.5281/zenodo.12204268 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments