Friday, October 11, 2024
No menu items!
HomeNatureShort-term post-fast refeeding enhances intestinal stemness via polyamines

Short-term post-fast refeeding enhances intestinal stemness via polyamines

  • Cheng, C. W. & Yilmaz Ö, H. 100 Years of exploiting diet and nutrition for tissue regeneration. Cell Stem Cell 28, 370–373 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nencioni, A., Caffa, I., Cortellino, S. & Longo, V. D. Fasting and cancer: molecular mechanisms and clinical application. Nat. Rev. Cancer 18, 707–719 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, C. W. et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14, 810–823 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longo, V. D. & Mattson, M. P. Fasting: molecular mechanisms and clinical applications. Cell Metab. 19, 181–192 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weindruch, R., Walford, R. L., Fligiel, S. & Guthrie, D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr. 116, 641–654 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calibasi-Kocal, G. et al. Nutritional control of intestinal stem cells in homeostasis and tumorigenesis. Trends Endocrinol. Metab. 32, 20–35 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515–519 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihaylova, M. M. et al. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22, 769–778.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yilmaz Ö, H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vernieri, C. et al. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in cancer patients. Cancer Discov. https://doi.org/10.1158/2159-8290.Cd-21-0030 (2021).

  • Salvadori, G. et al. Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape. Cell Metab. 33, 2247–2259.e6 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso, S. & Yilmaz Ö, H. Nutritional regulation of intestinal stem cells. Annu. Rev. Nutr. 38, 273–301 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Goto, N. et al. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell 29, 1246–1261.e6 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niec, R. E. et al. Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell 29, 1067–1082.e18 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palikuqi, B. et al. Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell 29, 1262–1272.e5 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    PubMed 

    Google Scholar
     

  • Cheng, C. W. et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell 178, 1115–1131.e15 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Igarashi, M. & Guarente, L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166, 436–450 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zismanov, V. et al. Phosphorylation of eIF2α is a translational control mechanism regulating muscle stem cell quiescence and self-renewal. Cell Stem Cell 18, 79–90 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Llorens-Bobadilla, E. et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morral, C. et al. Zonation of ribosomal DNA transcription defines a stem cell hierarchy in colorectal cancer. Cell Stem Cell 26, 845–861.e12 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benitah, S. A. & Welz, P. S. Circadian regulation of adult stem cell homeostasis and aging. Cell Stem Cell 26, 817–831 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulvihill, M. J. et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med. Chem. 1, 1153–1171 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Burger, M. T. et al. Identification of NVP-BKM120 as a potent, selective, orally bioavailable class I PI3 kinase inhibitor for treating cancer. ACS Med. Chem. Lett. 2, 774–779 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320.e22 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ginguay, A., Cynober, L., Curis, E. & Nicolis, I. Ornithine aminotransferase, an important glutamate-metabolizing enzyme at the crossroads of multiple metabolic pathways. Biology 6, 18 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daune, G., Gerhart, F. & Seiler, N. 5-Fluoromethylornithine, an irreversible and specific inhibitor of l-ornithine:2-oxo-acid aminotransferase. Biochem. J. 253, 481–488 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulin, R., Lu, L., Ackermann, B., Bey, P. & Pegg, A. E. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by α-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J. Biol. Chem. 267, 150–158 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Puleston, D. J. et al. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 184, 4186–4202.e20 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, M. H. & Wolff, E. C. Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. J. Biol. Chem. 293, 18710–18718 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puleston, D. J. et al. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 30, 352–363.e8 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zabala-Letona, A. et al. mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature 547, 109–113 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V. & Park, M. H. Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc. Natl Acad. Sci. USA 110, 2169–2174 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbruzzese, A., Park, M. H. & Folk, J. E. Deoxyhypusine hydroxylase from rat testis. Partial purification and characterization. J. Biol. Chem. 261, 3085–3089 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Gobert, A. P. et al. Hypusination orchestrates the antimicrobial response of macrophages. Cell Rep. 33, 108510 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruens, L. et al. Calorie restriction increases the number of competing stem cells and decreases mutation retention in the intestine. Cell Rep. 32, 107937 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span — from yeast to humans. Science 328, 321–326 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mai, V. et al. Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms. Cancer Res. 63, 1752–1755 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Faller, W. J. et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 517, 497–500 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Erdman, S. H. et al. APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis 20, 1709–1713 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Oliver, E. R., Saunders, T. L., Tarlé, S. A. & Glaser, T. Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse Minute. Development 131, 3907–3920 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Knight, J. R. et al. Rpl24(Bst) mutation suppresses colorectal cancer by promoting eEF2 phosphorylation via eEF2K. eLife 10, e69729 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagai, M. et al. Fasting–refeeding impacts immune cell dynamics and mucosal immune responses. Cell 178, 1072–1087.e14 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Napolitano, G. et al. mTOR-dependent phosphorylation controls TFEB nuclear export. Nat. Commun. 9, 3312 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tinkum, K. L. et al. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival. Proc. Natl Acad. Sci. USA 112, E7148–E7154 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, T. H., Escudero, S. & Shivdasani, R. A. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc. Natl Acad. Sci. USA 109, 3932–3937 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoumas-Morse, C. et al. Development of a polyamine database for assessing dietary intake. J. Am. Diet Assoc. 107, 1024–1027 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pegg, A. E. Functions of polyamines in mammals. J. Biol. Chem. 291, 14904–14912 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allmeroth, K. et al. N1-acetylspermidine is a determinant of hair follicle stem cell fate. J. Cell Sci. 134, jcs252767 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritsch, S. D. et al. Metabolic support by macrophages sustains colonic epithelial homeostasis. Cell Metab. 35, 1931–1943.e8 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Colnot, S. et al. Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers. Lab Invest. 84, 1619–1630 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 701–706 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuhrer, T., Heer, D., Begemann, B. & Zamboni, N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal. Chem. 83, 7074–7080 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Sellick, C. A., Hansen, R., Stephens, G. M., Goodacre, R. & Dickson, A. J. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat. Protoc. 6, 1241–1249 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments