Saturday, November 23, 2024
No menu items!
HomeNatureHighly variable magmatic accretion at the ultraslow-spreading Gakkel Ridge

Highly variable magmatic accretion at the ultraslow-spreading Gakkel Ridge

  • Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165–172 (1981).


    Google Scholar
     

  • Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435–449 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Shen, Y. & Forsyth, D. W. Geochemical constraints on initial and final depths of melting beneath mid‐ocean ridges. J. Geophys. Res. Solid Earth 100, 2211–2237 (1995).

    CAS 

    Google Scholar
     

  • Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cannat, M. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res. Solid Earth 101, 2847–2857 (1996).


    Google Scholar
     

  • Conley, M. M. & Dunn, R. A. Seismic shear wave structure of the uppermost mantle beneath the Mohns Ridge. Geochem. Geophys. Geosyst. 12, Q0AK01 (2011).


    Google Scholar
     

  • Corbalán, A. et al. Seismic velocity structure along and across the ultraslow-spreading Southwest Indian Ridge at 64°30′E showcases flipping detachment faults. J. Geophys. Res. Solid Earth 126, e2021JB022177 (2021).

    ADS 

    Google Scholar
     

  • Grevemeyer, I. et al. Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre. Nat. Geosci. 11, 444–448 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Momoh, E., Cannat, M., Watremez, L., Leroy, S. & Singh, S. C. Quasi‐3‐D seismic reflection imaging and wide‐angle velocity structure of nearly amagmatic oceanic lithosphere at the ultraslow‐spreading Southwest Indian Ridge. J. Geophys. Res. Solid Earth 122, 9511–9533 (2017).

    ADS 

    Google Scholar
     

  • Li, J. et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophys. Res. Lett. 42, 2656–2663 (2015).

    ADS 

    Google Scholar
     

  • Niu, X. et al. Along‐axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide‐angle seismic experiment. Geochem. Geophys. Geosyst. 16, 468–485 (2015).

    ADS 

    Google Scholar
     

  • Minshull, T. A., Muller, M. R. & White, R. S. Crustal structure of the Southwest Indian Ridge at 66°E: seismic constraints. Geophys. J. Int. 166, 135–147 (2006).

    ADS 

    Google Scholar
     

  • Liu, J. et al. Water enrichment in the mid-ocean ridge by recycling of mantle wedge residue. Earth Planet. Sci. Lett. 584, 117455 (2022).

    CAS 

    Google Scholar
     

  • Yu, X. & Dick, H. J. B. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge. Earth Planet. Sci. Lett. 531, 116002 (2020).

    CAS 

    Google Scholar
     

  • Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956–961 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jokat, W. et al. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423, 962–965 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Minshull, T. A. et al. Crustal structure at the Blake Spur fracture zone from expanding spread profiles. J. Geophys. Res. Solid Earth 96, 9955–9984 (1991).


    Google Scholar
     

  • Canales, J. P., Detrick, R. S., Lin, J., Collins, J. A. & Toomey, D. R. Crustal and upper mantle seismic structure beneath the rift mountains and across a nontransform offset at the Mid‐Atlantic Ridge (35°N). J. Geophys. Res. Solid Earth 105, 2699–2719 (2000).


    Google Scholar
     

  • Dunn, R. A. in Treatise on Geophysics (Second Edition) (ed. Schubert, G.) 419–451 (Elsevier, 2015).

  • Chen, Y. J. Oceanic crustal thickness versus spreading rate. Geophys. Res. Lett. 19, 753–756 (1992).

    ADS 

    Google Scholar
     

  • Christeson, G. L., Goff, J. A. & Reece, R. S. Synthesis of oceanic crustal structure from two‐dimensional seismic profiles. Rev. Geophys. 57, 504–529 (2019).

    ADS 

    Google Scholar
     

  • Dunn, R. A., Lekić, V., Detric, R. S. & Toomey, D. R. Three‐dimensional seismic structure of the Mid‐Atlantic Ridge (35°N): evidence for focused melt supply and lower crustal dike injection. J. Geophys. Res. Solid Earth 110, B09101 (2005).

    ADS 

    Google Scholar
     

  • Hooft, E. E. E., Detrick, R. S., Toomey, D. R., Collins, J. A. & Lin, J. Crustal thickness and structure along three contrasting spreading segments of the Mid‐Atlantic Ridge, 33.5°–35°N. J. Geophys. Res. Solid Earth 105, 8205–8226 (2000).


    Google Scholar
     

  • Jian, H., Singh, S. C., Chen, Y. J. & Li, J. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge. Geology 45, 143–146 (2017).

    ADS 

    Google Scholar
     

  • Seher, T. et al. Crustal velocity structure of the Lucky Strike segment of the Mid‐Atlantic Ridge at 37°N from seismic refraction measurements. J. Geophys. Res. Solid Earth 115, B03103 (2010).

    ADS 

    Google Scholar
     

  • Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Yang, A. Y. et al. A subduction influence on ocean ridge basalts outside the Pacific subduction shield. Nat. Commun. 12, 4757 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danyushevsky, L. V., Eggins, S. M., Falloon, T. J. & Christie, D. M. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; part I: incompatible behaviour, implications for mantle storage, and origin of regional variations. J. Petrol. 41, 1329–1364 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Krein, S. B., Molitor, Z. J. & Grove, T. L. ReversePetrogen: a multiphase dry reverse fractional crystallization-mantle melting thermobarometer applied to 13,589 mid-ocean ridge basalt glasses. J. Geophys. Res. Solid Earth 126, e2020JB021292 (2021).

    ADS 

    Google Scholar
     

  • Hebert, L. B. & Montési, L. G. J. Generation of permeability barriers during melt extraction at mid‐ocean ridges. Geochem. Geophys. Geosyst. 11, Q12008 (2010).

    ADS 

    Google Scholar
     

  • Schlindwein, V. & Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 535, 276–279 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Magde, L. S. & Sparks, D. W. Three‐dimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges. J. Geophys. Res. Solid Earth 102, 20571–20583 (1997).


    Google Scholar
     

  • Wanless, V. D., Behn, M. D., Shaw, A. M. & Plank, T. Variations in melting dynamics and mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: insights from olivine-hosted melt inclusions. Contrib. Mineral. Petrol. 167, 1005 (2014).

    ADS 

    Google Scholar
     

  • Jokat, W., Kollofrath, J., Geissler, W. H. & Jensen, L. Crustal thickness and earthquake distribution south of the Logachev Seamount, Knipovich Ridge. Geophys. Res. Lett. 39, L08302 (2012).

    ADS 

    Google Scholar
     

  • Fialko, Y. A. & Rubin, A. M. Thermodynamics of lateral dike propagation: implications for crustal accretion at slow spreading mid‐ocean ridges. J. Geophys. Res. Solid Earth. 103, 2501–2514 (1998).


    Google Scholar
     

  • Robinson, C. J., Bickle, M. J., Minshull, T. A., White, R. S. & Nichols, A. R. L. Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting. Earth Planet. Sci. Lett. 188, 383–398 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Cannat, M., Rommevaux‐Jestin, C. & Fujimoto, H. Melt supply variations to a magma‐poor ultra‐slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochem. Geophys. Geosyst. 4, 9104 (2003).

    ADS 

    Google Scholar
     

  • Zhou, F. & Dyment, J. Temporal and spatial variation of seafloor spreading at ultraslow spreading ridges: contribution of marine magnetics. Earth Planet. Sci. Lett. 602, 117957 (2023).

    CAS 

    Google Scholar
     

  • Parmentier, E. M. & Morgan, J. P. Spreading rate dependence of three-dimensional structure in oceanic spreading centres. Nature 348, 325–328 (1990).

    ADS 

    Google Scholar
     

  • Sparks, D. W. & Parmentier, E. M. The structure of three‐dimensional convection beneath oceanic spreading centres. Geophys. J. Int. 112, 81–91 (1993).

    ADS 

    Google Scholar
     

  • Hirth, G. & Kohlstedt, D. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys. Monogr. 138, 83–106 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, C.-Z. et al. Archean cratonic mantle recycled at a mid-ocean ridge. Sci. Adv. 8, eabn6749 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyzen, C. M., Toplis, M. J., Humler, E., Ludden, J. N. & Mével, C. A discontinuity in mantle composition beneath the southwest Indian ridge. Nature 421, 731–733 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C.-Z. et al. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452, 311–316 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kristoffersen, Y., Husebye, E. S., Bungum, H. & Gregersen, S. Seismic investigations of the Nansen Ridge during the FRAM I experiment. Tectonophysics 82, 57–68 (1982).

    ADS 

    Google Scholar
     

  • White, R. S., Minshull, T. A., Bickle, M. J. & Robinson, C. J. Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. J. Petrol. 42, 1171–1196 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Harding, J. L. et al. Magmatic-tectonic conditions for hydrothermal venting on an ultraslow-spread oceanic core complex. Geology 45, 839–842 (2017).

    ADS 

    Google Scholar
     

  • Dannowski, A. et al. Seismic structure of an oceanic core complex at the Mid‐Atlantic Ridge, 22°19′N. J. Geophys. Res. Solid Earth 115, B07106 (2010).

    ADS 

    Google Scholar
     

  • Vaddineni, V. A., Singh, S. C., Grevemeyer, I., Audhkhasi, P. & Papenberg, C. Evolution of the crustal and upper mantle seismic structure from 0–27 Ma in the equatorial Atlantic Ocean at 2° 43′S. J. Geophys. Res. Solid Earth 126, e2020JB021390 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T., Tucholke, B. E. & Lin, J. Spatial and temporal variations in crustal production at the Mid‐Atlantic Ridge, 25°N–27°30′N and 0–27 Ma. J. Geophys. Res. Solid Earth 120, 2119–2142 (2015).

    ADS 

    Google Scholar
     

  • Ding, W. et al. Submarine wide-angle seismic experiments in the High Arctic: the JASMInE Expedition in the slowest spreading Gakkel Ridge. Geosyst. Geoenviron. 1, 100076 (2022).


    Google Scholar
     

  • Zelt, C. A. & Smith, R. B. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int. 108, 16–34 (1992).

    ADS 

    Google Scholar
     

  • Korenaga, J. et al. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. J. Geophys. Res. Solid Earth 105, 21591–21614 (2000).


    Google Scholar
     

  • White, R. S., McKenzie, D. & O’Nions, R. K. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res. Solid Earth 97, 19683–19715 (1992).


    Google Scholar
     

  • Nikishin, A. M., Gaina, C., Petrov, E. I., Malyshev, N. A. & Freiman, S. I. Eurasia Basin and Gakkel Ridge, Arctic Ocean: crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data. Tectonophysics 746, 64–82 (2018).

    ADS 

    Google Scholar
     

  • Kuo, B.-Y. & Forsyth, D. W. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5° S: upwelling centers and variations in crustal thickness. Mar. Geophys. Res. 10, 205–232 (1988).


    Google Scholar
     

  • Lin, J., Purdy, G. M., Schouten, H., Sempere, J.-C. & Zervas, C. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature 344, 627–632 (1990).

    ADS 

    Google Scholar
     

  • Wessel, P. et al. The generic mapping tools version 6. Geochem. Geophys. Geosyst. 20, 5556–5564 (2019).

    ADS 

    Google Scholar
     

  • Andersen, O. B., Knudsen, P., Kenyon, S., Holmes, S. & Factor, J. K. in International Association of Geodesy Symposia Vol. 149 (eds Freymueller, J. T. & Sánchez, L.) 77–81 (Springer, 2019).

  • Jakobsson, M. et al. The international bathymetric chart of the Arctic Ocean version 4.0. Sci. Data 7, 176 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behn, M. D., Boettcher, M. S. & Hirth, G. Thermal structure of oceanic transform faults. Geology 35, 307–310 (2007).

    ADS 

    Google Scholar
     

  • Seton, M. et al. A global data set of present-day oceanic crustal age and seafloor spreading parameters. Geochem. Geophys. Geosyst. 21, e2020GC009214 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Carlson, R. L. & Herrick, C. N. Densities and porosities in the oceanic crust and their variations with depth and age. J. Geophys. Res. Solid Earth 95, 9153–9170 (1990).


    Google Scholar
     

  • Christensen, N. I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816 (2004).


    Google Scholar
     

  • Ma, X., Meert, J. G., Xu, Z. & Yi, Z. Late Triassic intra-oceanic arc system within Neotethys: evidence from cumulate appinite in the Gangdese belt, southern Tibet. Lithosphere 10, 545–565 (2018).

    ADS 

    Google Scholar
     

  • Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 7, Q08006 (2006).

    ADS 

    Google Scholar
     

  • Zong, T. et al. H2O in basaltic glasses from the slow-spreading Carlsberg Ridge: implications for mantle source and magmatic processes. Lithos 332–333, 274–286 (2019).

    ADS 

    Google Scholar
     

  • Herzberg, C. & Asimow, P. D. PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochem. Geophys. Geosyst. 16, 563–578 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Heister, T., Dannberg, J., Gassmöller, R. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods – II: realistic models and problems. Geophys. J. Int. 210, 833–851 (2017).

    ADS 

    Google Scholar
     

  • Kronbichler, M., Heister, T. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191, 12–29 (2012).

    ADS 

    Google Scholar
     

  • Zha, C., Zhang, F., Lin, J., Zhang, T. & Tian, J. On the relative importance of buoyancy and thickening of aging lithosphere in mantle upwelling and crustal production beneath global mid-ocean ridge system. J. Geophys. Res. Solid Earth 129, e2023JB028432 (2024).

    ADS 

    Google Scholar
     

  • Forsyth, D. W. Crustal thickness and the average depth and degree of melting in fractional melting models of passive flow beneath mid‐ocean ridges. J. Geophys. Res. Solid Earth 98, 16073–16079 (1993).


    Google Scholar
     

  • Zhang, T. Data and Codes of JASMInE_2021. Figshare https://doi.org/10.6084/m9.figshare.2555721 (2024).

  • Zhang, T. JASMINE2021_GeochemistryData. Figshare https://doi.org/10.6084/m9.figshare.26123878 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments