Bevins, R. E. et al. Constraining the provenance of the Stonehenge âAltar Stoneâ: evidence from automated mineralogy and UâPb zircon age dating. J. Archaeolog. Sci. 120, 105188 (2020).
Bevins, R. E. et al. The Stonehenge Altar Stone was probably not sourced from the Old Red Sandstone of the Anglo-Welsh Basin: time to broaden our geographic and stratigraphic horizons? J. Archaeolog. Sci. Rep. 51, 104215 (2023).
Pearson, M. P. et al. in Stonehenge for the Ancestors: Part 2: Synthesis (eds Pearson, M. P. et al.) 47â75 (Sidestone Press, 2022).
Pitts, M. W. How to Build Stonehenge (Thames & Hudson, 2022).
Nash, D. J. et al. Origins of the sarsen megaliths at Stonehenge. Sci. Adv. 6, eabc0133 (2020).
Nash, D. J. et al. Petrological and geochemical characterisation of the sarsen stones at Stonehenge. PLoS ONE 16, e0254760 (2021).
Pearson, M. P. et al. Megalith quarries for Stonehengeâs bluestones. Antiquity 93, 45â62 (2019).
Pearson, M. P. et al. Craig Rhos-y-felin: a Welsh bluestone megalith quarry for Stonehenge. Antiquity 89, 1331â1352 (2015).
Ixer, R., Turner, P., Molyneux, S. & Bevins, R. The petrography, geological age and distribution of the Lower Palaeozoic Sandstone debitage from the Stonehenge landscape. Wilts. Archaeol. Nat. Hist. Mag. 110, 1â16 (2017).
Ixer, R. & Turner, P. A detailed re-examination of the petrography of the Altar Stone and other non-sarsen sandstones from Stonehenge as a guide to their provenance. Wilts. Archaeol. Nat. Hist. Mag. 99, 1â9 (2006).
Ixer, R., Bevins, R. E., Pirrie, D., Turner, P. & Power, M. No provenance is better than wrong provenance: Milford Haven and the Stonehenge sandstones. Wilts. Archaeol. Nat. Hist. Mag. 113, 1â15 (2020).
Thomas, H. H. The source of the stones of Stonehenge. The Antiq. J. 3, 239â260 (1923).
Kendall, R. S. The Old Red Sandstone of Britain and Irelandâa review. Proc. Geol. Assoc. 128, 409â421 (2017).
Woodcock, N., Holdsworth, R. E. & Strachan, R. A. in Geological History of Britain and Ireland (eds Woodcock, N. & Strachan, R. A.) Ch. 6 91â109 (Wiley-Blackwell, 2012).
Pearson, M. P., Pollard, J., Richards, C., Thomas, J. & Welham, K. Stonehenge: Making Sense of a Prehistoric Mystery (Council for British Archaeology, 2015).
Shewan, L. et al. Dating the megalithic culture of laos: Radiocarbon, optically stimulated luminescence and U/Pb zircon results. PLoS ONE 16, e0247167 (2021).
Kelloway, S. et al. Sourcing olive jars using UâPb ages of detrital zircons: a study of 16th century olive jars recovered from the Solomon Islands. Geoarchaeology 29, 47â60 (2014).
Barham, M. et al. The answers are blowinâ in the wind: ultra-distal ashfall zircons, indicators of Cretaceous super-eruptions in eastern Gondwana. Geology 44, 643â646 (2016).
Gillespie, J., Glorie, S., Khudoley, A. & Collins, A. S. Detrital apatite UâPb and trace element analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia). Lithos 314â315, 140â155 (2018).
Fairey, B. J. et al. The provenance of the Devonian Old Red Sandstone of the Dingle Peninsula, SW Ireland; the earliest record of Laurentian and peri-Gondwanan sediment mixing in Ireland. J. Geol. Soc. 175, 411â424 (2018).
Bevins, R. E. et al. Assessing the authenticity of a sample taken from the Altar Stone at Stonehenge in 1844 using portable XRF and automated SEM-EDS. J. Archaeol. Sci. Rep. 49, 103973 (2023).
Bevins, R. E. et al. Linking derived debitage to the Stonehenge Altar Stone using portable X-ray fluorescence analysis. Mineral. Mag. 86, 688â700 (2022).
Morton, A. C., Chisholm, J. I. & Frei, D. Provenance of Carboniferous sandstones in the central and southern parts of the Pennine Basin, UK: evidence from detrital zircon ages. Proc. York. Geol. Soc. 63, https://doi.org/10.1144/pygs2020-010 (2021).
Cawood, P. A., Nemchin, A. A., Strachan, R., Prave, T. & Krabbendam, M. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. J. Geol. Soc. 164, 257â275 (2007).
Strachan, R. A., Olierook, H. K. H. & Kirkland, C. L. Evidence from the UâPbâHf signatures of detrital zircons for a Baltican provenance for basal Old Red Sandstone successions, northern Scottish Caledonides. J. Geol. Soc. 178, https://doi.org/10.1144/jgs2020-241 (2021).
Stevens, T. & Baykal, Y. Detrital zircon UâPb ages and source of the late Palaeocene Thanet Formation, Kent, SE England. Proc. Geol. Assoc. 132, 240â248 (2021).
OâSullivan, G., Chew, D. M., Kenny, G., Heinrichs, I. & Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth Sci. Rev. 201, 103044 (2020).
Oliver, G., Wilde, S. & Wan, Y. Geochronology and geodynamics of Scottish granitoids from the late Neoproterozoic break-up of Rodinia to Palaeozoic collision. J. Geol. Soc. 165, 661â674 (2008).
Fleischer, M. & Altschuler, Z. S. The lanthanides and yttrium in minerals of the apatite group-an analysis of the available data. Neu. Jb. Mineral. Mh. 10, 467â480 (1986).
Goodenough, K. M., Millar, I., Strachan, R. A., Krabbendam, M. & Evans, J. A. Timing of regional deformation and development of the Moine Thrust Zone in the Scottish Caledonides: constraints from the UâPb geochronology of alkaline intrusions. J. Geol. Soc. 168, 99â114 (2011).
Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207â221 (1975).
Evans, J. A. et al. Applying lead (Pb) isotopes to explore mobility in humans and animals. PLoS ONE 17, e0274831 (2022).
Morton, A., Knox, R. & Frei, D. Heavy mineral and zircon age constraints on provenance of the Sherwood Sandstone Group (Triassic) in the eastern Wessex Basin, UK. Proc. Geol. Assoc. 127, 514â526 (2016).
Morton, A., Hounslow, M. W. & Frei, D. Heavy-mineral, mineral-chemical and zircon-age constraints on the provenance of Triassic sandstones from the Devon coast, southern Britain. Geologos 19, 67â85 (2013).
Phillips, E. R., Smith, R. A., Stone, P., Pashley, V. & Horstwood, M. Zircon age constraints on the provenance of Llandovery to Wenlock sandstones from the Midland Valley terrane of the Scottish Caledonides. Scott. J. Geol. 45, 131â146 (2009).
McKellar, Z., Hartley, A. J., Morton, A. C. & Frei, D. A multidisciplinary approach to sediment provenance analysis of the late SilurianâDevonian Lower Old Red Sandstone succession, northern Midland Valley Basin, Scotland. J. Geol. Soc. 177, 297â314 (2019).
Beranek, L. P., Gee, D. G. & Fisher, C. M. Detrital zircon UâPbâHf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides. GSA Bull. 132, 1987â2003 (2020).
John, B. The Stonehenge Bluestones (Greencroft Books, 2018).
John, B. The Stonehenge bluestones did not come from Waun Mawn in West Wales. The Holocene https://doi.org/10.1177/09596836241236318 (2024).
Clark, C. D. et al. Growth and retreat of the last BritishâIrish Ice Sheet, 31â000 to 15â000âyears ago: the BRITICE-CHRONO reconstruction. Boreas 51, 699â758 (2022).
Gibbard, P. L. & Clark, C. D. in Developments in Quaternary Sciences, Vol. 15 (eds Ehlers, J. et al.) 75â93 (Elsevier, 2011).
Bevins, R., Ixer, R., Pearce, N., Scourse, J. & Daw, T. Lithological description and provenancing of a collection of bluestones from excavations at Stonehenge by William Hawley in 1924 with implications for the human versus ice transport debate of the monumentâs bluestone megaliths. Geoarchaeology 38, 771â785 (2023).
Snoeck, C. et al. Strontium isotope analysis on cremated human remains from Stonehenge support links with west Wales. Sci. Rep. 8, 10790 (2018).
Viner, S., Evans, J., Albarella, U. & Pearson, M. P. Cattle mobility in prehistoric Britain: strontium isotope analysis of cattle teeth from Durrington Walls (Wiltshire, Britain). J. Archaeolog. Sci. 37, 2812â2820 (2010).
Evans, J. A., Chenery, C. A. & Fitzpatrick, A. P. Bronze Age childhood migration of individuals near Stonehenge, revealed by strontium and oxygen isotope tooth enamel analysis. Archaeometry 48, 309â321 (2006).
Bradley, R. Beyond the bluestones: links between distant monuments in Late Neolithic Britain and Ireland. Antiquity 98, 821â828 (2024).
Bradley, R. Long distance connections within Britain and Ireland: the evidence of insular rock art. Proc. Prehist. Soc. 89, 249â271 (2023).
Fairweather, A. D. & Ralston, I. B. M. The Neolithic timber hall at Balbridie, Grampian Region, Scotland: the building, the date, the plant macrofossils. Antiquity 67, 313â323 (1993).
Bayliss, A., Marshall, P., Richards, C. & Whittle, A. Islands of history: the Late Neolithic timescape of Orkney. Antiquity 91, 1171â1188 (2017).
Parker Pearson, M. et al. in Megaliths and Geology (eds Bouventura, R. et al.) 151â169 (Archaeopress Publishing, 2020).
Pigière, F. & Smyth, J. First evidence for cattle traction in Middle Neolithic Ireland: A pivotal element for resource exploitation. PLoS ONE 18, e0279556 (2023).
Godwin, H. History of the natural forests of Britain: establishment, dominance and destruction. Philos. Trans. R. Soc. B 271, 47â67 (1975).
MartÃnková, N. et al. Divergent evolutionary processes associated with colonization of offshore islands. Mol. Ecol. 22, 5205â5220 (2013).
Bradley, R. & Edmonds, M. Interpreting the Axe Trade: Production and Exchange in Neolithic Britain (Cambridge Univ. Press, 2005).
Peacock, D., Cutler, L. & Woodward, P. A Neolithic voyage. Int. J. Naut. Archaeol. 39, 116â124 (2010).
Pinder, A. P., Panter, I., Abbott, G. D. & Keely, B. J. Deterioration of the Hanson Logboat: chemical and imaging assessment with removal of polyethylene glycol conserving agent. Sci. Rep. 7, 13697 (2017).
Harff, J. et al. in Submerged Landscapes of the European Continental Shelf: Quaternary Paleoenvironments (eds Flemming, N. C. et al.) 11â49 (2017).
Nordsvan, A. R., Kirscher, U., Kirkland, C. L., Barham, M. & Brennan, D. T. Resampling (detrital) zircon age distributions for accurate multidimensional scaling solutions. Earth Sci. Rev. 204, 103149 (2020).
Ixer, R., Bevins, R. & Turner, P. Alternative Altar Stones? Carbonate-cemented micaceous sandstones from the Stonehenge landscape. Wilts. Archaeol. Nat. Hist. Mag. 112, 1â13 (2019).
Paton, C., Hellstrom, J. C., Paul, B., Woodhead, J. D. & Hergt, J. M. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508â2518 (2011).
Vermeesch, P. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479â1493 (2018).
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ UâPb zircon geochronology. Chem. Geol. 211, 47â69 (2004).
Sláma, J. et al. PleÅ¡ovice zirconâA new natural reference material for UâPb and Hf isotopic microanalysis. Chem. Geol. 249, 1â35 (2008).
Wiedenbeck, M. et al. Three natural zircon standards for U-Th-Pb, LuâHf, trace element and REE analyses. Geostand. Newslett. 19, 1â23 (1995).
Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H. & Corfu, F. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand. Geoanal. Res. 33, 145â168 (2009).
Marsh, J. H., Jørgensen, T. R. C., Petrus, J. A., Hamilton, M. A. & Mole, D. R. U-Pb, trace element, and hafnium isotope composition of the Maniitsoq zircon: a potential new Archean zircon reference material. Goldschmidt Abstr. 2019, 18 (2019).
Vermeesch, P. On the treatment of discordant detrital zircon UâPb data. Geochronology 3, 247â257 (2021).
Gehrels, G. in Tectonics of Sedimentary Basins: Recent Advances (eds Busby, C. & Azor, A.) 45â62 (2011).
Vermeesch, P. How many grains are needed for a provenance study? Earth Planet. Sci. Lett. 224, 441â451 (2004).
Dröllner, M., Barham, M., Kirkland, C. L. & Ware, B. Every zircon deserves a date: selection bias in detrital geochronology. Geol. Mag. 158, 1135â1142 (2021).
Zutterkirch, I. C., Kirkland, C. L., Barham, M. & Elders, C. Thin-section detrital zircon geochronology mitigates bias in provenance investigations. J. Geol. Soc. 179, jgs2021â070 (2021).
Morton, A., Waters, C., Fanning, M., Chisholm, I. & Brettle, M. Origin of Carboniferous sandstones fringing the northern margin of the Wales-Brabant Massif: insights from detrital zircon ages. Geol. J. 50, 553â574 (2015).
Luvizotto, G. et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem. Geol. 261, 346â369 (2009).
Zack, T. et al. In situ UâPb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib. Mineral. Petrol. 162, 515â530 (2011).
Dröllner, M., Barham, M. & Kirkland, C. L. Reorganization of continent-scale sediment routing based on detrital zircon and rutile multi-proxy analysis. Basin Res. 35, 363â386 (2023).
Liebmann, J., Barham, M. & Kirkland, C. L. Rutile ages and thermometry along a Grenville anorthosite pathway. Geochem. Geophys. Geosyst. 24, e2022GC010330 (2023).
Zack, T. & Kooijman, E. Petrology and geochronology of rutile. Rev. Mineral. Geochem. 83, 443â467 (2017).
Thompson, J. et al. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. J. Anal. At. Spectrom. 31, 1206â1215 (2016).
Schmitz, M. D., Bowring, S. A. & Ireland, T. R. Evaluation of Duluth Complex anorthositic series (AS3) zircon as a UâPb geochronological standard: new high-precision isotope dilution thermal ionization mass spectrometry results. Geochim. Cosmochim. Acta 67, 3665â3672 (2003).
Schoene, B. & Bowring, S. UâPb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib. Mineral. Petrol. 151, 615â630 (2006).
Thomson, S. N., Gehrels, G. E., Ruiz, J. & Buchwaldt, R. Routine low-damage apatite UâPb dating using laser ablation-multicollector-ICPMS. Geochem. Geophys. Geosyst. 13, https://doi.org/10.1029/2011GC003928 (2012).
Barfod, G. H., Krogstad, E. J., Frei, R. & Albarède, F. LuâHf and PbSL geochronology of apatites from Proterozoic terranes: a first look at LuâHf isotopic closure in metamorphic apatite. Geochim. Cosmochim. Acta 69, 1847â1859 (2005).
McDowell, F. W., McIntosh, W. C. & Farley, K. A. A precise 40Arâ39Ar reference age for the Durango apatite (UâTh)/He and fission-track dating standard Chem. Geol. 214, 249â263 (2005).
Kirkland, C. L. et al. Apatite: a UâPb thermochronometer or geochronometer? Lithos 318-319, 143â157 (2018).
Simpson, A. et al. In-situ Lu Hf geochronology of garnet, apatite and xenotime by LA ICP MS/MS. Chem. Geol. 577, 120299 (2021).
Glorie, S. et al. Robust laser ablation LuâHf dating of apatite: an empirical evaluation. Geol. Soc. Lond. Spec. Publ. 537, 165â184 (2024).
Norris, C. & Danyushevsky, L. Towards estimating the complete uncertainty budget of quantified results measured by LA-ICP-MS. Goldschmidt Abstr. 2018, 1894 (2018).
Nebel, O., Morel, M. L. A. & Vroon, P. Z. Isotope dilution determinations of Lu, Hf, Zr, Ta and W, and Hf isotope compositions of NIST SRM 610 and 612 glass wafers. Geostand. Geoanal. Res. 33, 487â499 (2009).
Kharkongor, M. B. K. et al. Apatite laser ablation LuHf geochronology: A new tool to date mafic rocks. Chem. Geol. 636, 121630 (2023).
Glorie, S. et al. Detrital apatite LuâHf and UâPb geochronology applied to the southwestern Siberian margin. Terra Nova 34, 201â209 (2022).
Spencer, C. J., Kirkland, C. L., Roberts, N. M. W., Evans, N. J. & Liebmann, J. Strategies towards robust interpretations of in situ zircon LuâHf isotope analyses. Geosci. Front. 11, 843â853 (2020).
Jochum, K. P. et al. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29, 333â338 (2005).
Janousek, V., Farrow, C. & Erban, V. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J. Petrol. 47, 1255â1259 (2006).
Boynton, W. V. in Developments in Geochemistry, Vol. 2 (ed. Henderson, P.) 63â114 (Elsevier, 1984).
Landing, E., Keppie, J. D., Keppie, D. F., Geyer, G. & Westrop, S. R. Greater Avaloniaâlatest EdiacaranâOrdovicia âperibalticâ terrane bounded by continental margin prisms (âGanderiaâ, Harlech Dome, Meguma): review, tectonic implications, and paleogeography. Earth Sci. Rev. 224, 103863 (2022).