Thursday, September 4, 2025
No menu items!
HomeNature3D-printed micro ion trap technology for quantum information applications

3D-printed micro ion trap technology for quantum information applications

  • Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    ADS 

    Google Scholar
     

  • Brown, L. & Gabrielse, G. Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • Smorra, C. et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371–374 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scielzo, N. D. et al. The β-decay Paul trap: a radiofrequency-quadrupole ion trap for precision β-decay studies. Nucl. Instrum. Methods Phys. Res. A 681, 94–100 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Roussy, T. S. et al. An improved bound on the electron’s electric dipole moment. Science 381, 46–50 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Douglas, D. J., Frank, A. J. & Mao, D. Linear ion traps in mass spectrometry. Mass Spectrom. Rev. 24, 1–29 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • Chiaverini, J. et al. Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5, 419–439 (2005).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baldacchini, T. Three-Dimensional Microfabrication Using Two-Photon Polymerization (William Andrew, 2016).

  • Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Wesenberg, J. H. Electrostatics of surface-electrode ion traps. Phys. Rev. A 78, 063410 (2008).

    ADS 

    Google Scholar
     

  • Nguyen, L. M. A., Bowers, B. & Mouradian, S. The effect of trap design on the scalability of trapped-ion quantum technologies. Entropy 27, 576 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brownnutt, M., Kumph, M., Rabl, P. & Blatt, R. Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419–1482 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Brown, K. R., Chiaverini, J., Sage, J. M. & Häffner, H. Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater. 6, 892–905 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Blakestad, R. B. et al. High-fidelity transport of trapped-ion qubits through an X-junction trap array. Phys. Rev. Lett. 102, 153002 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ragg, S., Decaroli, C., Lutz, T. & Home, J. P. Segmented ion-trap fabrication using high precision stacked wafers. Rev. Sci. Instrum. 90, 103203 (2019).

    ADS 

    Google Scholar
     

  • Decaroli, C. et al. Design, fabrication and characterization of a micro-fabricated stacked-wafer segmented ion trap with two X-junctions. Quantum Sci. Technol. 6, 044001 (2021).

    ADS 

    Google Scholar
     

  • See, P., Wilpers, G., Gill, P. & Sinclair, A. G. Fabrication of a monolithic array of three dimensional Si-based ion traps. J. Microelectromech. Syst. 22, 1180–1189 (2013).

    CAS 

    Google Scholar
     

  • Auchter, S. et al. Industrially microfabricated ion trap with 1 eV trap depth. Quantum Sci. Technol. 7, 035015 (2022).

    ADS 

    Google Scholar
     

  • Biener, J. et al. Miniature ion traps for fast, high-fidelity and scalable quantum computations. US patent US20230274174A1 (2023).

  • Quinn, A., Brown, M., Gardner, T. J. & Allcock, D. T. C. Geometries and fabrication methods for 3D printing ion traps. Preprint at http://arxiv.org/abs/2205.15892 (2022).

  • Xia, X. et al. Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, H. et al. High-resolution 3D printed photonic waveguide devices. Adv. Opt. Mater. 8, 2000613 (2020).

    CAS 

    Google Scholar
     

  • Oellers, M., Lucklum, F. & Vellekoop, M. J. On-chip mixing of liquids with swap structures written by two-photon polymerization. Microfluid. Nanofluidics 24, 4 (2019).


    Google Scholar
     

  • Fendler, C. et al. Microscaffolds by direct laser writing for neurite guidance leading to tailor-made neuronal networks. Adv. Biosyst. 3, 1800329 (2019).


    Google Scholar
     

  • Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutherland, R. T., Yu, Q., Beck, K. M. & Häffner, H. One- and two-qubit gate infidelities due to motional errors in trapped ions and electrons. Phys. Rev. A 105, 022437 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Schindler, P. et al. A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013).

    ADS 

    Google Scholar
     

  • Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

    ADS 

    Google Scholar
     

  • Jefferts, S. R., Monroe, C., Bell, E. W. & Wineland, D. J. Coaxial-resonator-driven rf (Paul) trap for strong confinement. Phys. Rev. A 51, 3112–3116 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Home, J. P. & Steane, A. M. Electrode configurations for fast separation of trapped ions. Quantum Inf. Comput. 6, 289–325 (2006).

    CAS 
    MATH 

    Google Scholar
     

  • Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moses, S. A. et al. A race-track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).

    CAS 

    Google Scholar
     

  • Low, G. H., Herskind, P. F. & Chuang, I. L. Finite-geometry models of electric field noise from patch potentials in ion traps. Phys. Rev. A 84, 53425 (2011).

    ADS 

    Google Scholar
     

  • Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bushev, P. et al. Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing. Eur. Phys. J. D 50, 97–102 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Goldman, J. & Gabrielse, G. Optimized planar Penning traps for quantum-information studies. Phys. Rev. A 81, 052335 (2010).

    ADS 

    Google Scholar
     

  • Yu, Q. et al. Feasibility study of quantum computing using trapped electrons. Phys. Rev. A 105, 022420 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • An, D. et al. Surface trap with dc-tunable ion-electrode distance. Rev. Sci. Instrum. 89, 093102 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments