Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).
Brown, L. & Gabrielse, G. Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986).
Smorra, C. et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371–374 (2017).
Scielzo, N. D. et al. The β-decay Paul trap: a radiofrequency-quadrupole ion trap for precision β-decay studies. Nucl. Instrum. Methods Phys. Res. A 681, 94–100 (2012).
Roussy, T. S. et al. An improved bound on the electron’s electric dipole moment. Science 381, 46–50 (2023).
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
Douglas, D. J., Frank, A. J. & Mao, D. Linear ion traps in mass spectrometry. Mass Spectrom. Rev. 24, 1–29 (2005).
Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).
Chiaverini, J. et al. Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5, 419–439 (2005).
Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006).
Baldacchini, T. Three-Dimensional Microfabrication Using Two-Photon Polymerization (William Andrew, 2016).
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).
Wesenberg, J. H. Electrostatics of surface-electrode ion traps. Phys. Rev. A 78, 063410 (2008).
Nguyen, L. M. A., Bowers, B. & Mouradian, S. The effect of trap design on the scalability of trapped-ion quantum technologies. Entropy 27, 576 (2025).
Brownnutt, M., Kumph, M., Rabl, P. & Blatt, R. Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419–1482 (2015).
Brown, K. R., Chiaverini, J., Sage, J. M. & Häffner, H. Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater. 6, 892–905 (2021).
Blakestad, R. B. et al. High-fidelity transport of trapped-ion qubits through an X-junction trap array. Phys. Rev. Lett. 102, 153002 (2009).
Ragg, S., Decaroli, C., Lutz, T. & Home, J. P. Segmented ion-trap fabrication using high precision stacked wafers. Rev. Sci. Instrum. 90, 103203 (2019).
Decaroli, C. et al. Design, fabrication and characterization of a micro-fabricated stacked-wafer segmented ion trap with two X-junctions. Quantum Sci. Technol. 6, 044001 (2021).
See, P., Wilpers, G., Gill, P. & Sinclair, A. G. Fabrication of a monolithic array of three dimensional Si-based ion traps. J. Microelectromech. Syst. 22, 1180–1189 (2013).
Auchter, S. et al. Industrially microfabricated ion trap with 1 eV trap depth. Quantum Sci. Technol. 7, 035015 (2022).
Biener, J. et al. Miniature ion traps for fast, high-fidelity and scalable quantum computations. US patent US20230274174A1 (2023).
Quinn, A., Brown, M., Gardner, T. J. & Allcock, D. T. C. Geometries and fabrication methods for 3D printing ion traps. Preprint at http://arxiv.org/abs/2205.15892 (2022).
Xia, X. et al. Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019).
Gao, H. et al. High-resolution 3D printed photonic waveguide devices. Adv. Opt. Mater. 8, 2000613 (2020).
Oellers, M., Lucklum, F. & Vellekoop, M. J. On-chip mixing of liquids with swap structures written by two-photon polymerization. Microfluid. Nanofluidics 24, 4 (2019).
Fendler, C. et al. Microscaffolds by direct laser writing for neurite guidance leading to tailor-made neuronal networks. Adv. Biosyst. 3, 1800329 (2019).
Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998).
Sutherland, R. T., Yu, Q., Beck, K. M. & Häffner, H. One- and two-qubit gate infidelities due to motional errors in trapped ions and electrons. Phys. Rev. A 105, 022437 (2022).
Schindler, P. et al. A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013).
Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).
Jefferts, S. R., Monroe, C., Bell, E. W. & Wineland, D. J. Coaxial-resonator-driven rf (Paul) trap for strong confinement. Phys. Rev. A 51, 3112–3116 (1995).
Home, J. P. & Steane, A. M. Electrode configurations for fast separation of trapped ions. Quantum Inf. Comput. 6, 289–325 (2006).
Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).
Moses, S. A. et al. A race-track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).
Low, G. H., Herskind, P. F. & Chuang, I. L. Finite-geometry models of electric field noise from patch potentials in ion traps. Phys. Rev. A 84, 53425 (2011).
Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).
Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).
Bushev, P. et al. Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing. Eur. Phys. J. D 50, 97–102 (2008).
Goldman, J. & Gabrielse, G. Optimized planar Penning traps for quantum-information studies. Phys. Rev. A 81, 052335 (2010).
Yu, Q. et al. Feasibility study of quantum computing using trapped electrons. Phys. Rev. A 105, 022420 (2022).
An, D. et al. Surface trap with dc-tunable ion-electrode distance. Rev. Sci. Instrum. 89, 093102 (2018).