Thursday, December 18, 2025
No menu items!
HomeNature3D nanolithography with metalens arrays and spatially adaptive illumination

3D nanolithography with metalens arrays and spatially adaptive illumination

  • Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S., Kubicek, R. & Bergbreiter, S. 3D-printed electrostatic microactuators for flexible microsystems. Adv. Funct. Mater. 33, 202304991 (2023).

    Article 

    Google Scholar
     

  • Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, S. et al. 3D-printed micro ion trap technology for quantum information applications. Nature 645, 362–368 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, C. et al. High efficiency laser-driven proton sources using 3D-printed micro-structure. Commun. Phys. 5, 124 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, L. J., Campbell, J. H., Lu, Y. F., Bernat, T. & Petta, N. Direct writing target structures by two-photon polymerization. Fusion Sci. Technol. 70, 295–309 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vidler, C. et al. Dynamic interface printing. Nature 634, 1096–1102 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, W. et al. Three-dimensional nanoprinting via charged aerosol jets. Nature 592, 54–59 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kronenfeld, J. M., Rother, L., Saccone, M. A., Dulay, M. T. & DeSimone, J. M. Roll-to-roll, high-resolution 3D printing of shape-specific particles. Nature 627, 306–312 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, X. et al. Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. 3D polycatenated architected materials. Science 387, 269–277 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, F. et al. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 378, 1325–1331 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Somers, P. et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light Sci. Appl. 10, 199 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang, W. et al. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. High-throughput two-photon 3D printing enabled by holographic multi-foci high-speed scanning. Nano Lett. 24, 2671–2679 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiefer, P. A multi-photon (7 × 7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array. Light Adv. Manuf. 4, 28–41 (2024).


    Google Scholar
     

  • Yang, S. et al. Parallel two-photon lithography achieving uniform sub-200 nm features with thousands of individually controlled foci. Opt. Express 31, 14174–14184 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiao, B. et al. Acousto-optic scanning spatial-switching multiphoton lithography. Int. J. Extreme Manuf. 5, 035008 (2023).

    CAS 

    Google Scholar
     

  • Arnoux, C. et al. Understanding and overcoming proximity effects in multi-spot two-photon direct laser writing. Add. Manuf. 49, 102491 (2022).


    Google Scholar
     

  • Wang, X. et al. 3D nanolithography via holographic multi-focus metalens. Laser Photonics Rev. 18, 2400181 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walsh, M. E., Zhang, F., Menon, R. & Smith, H. I. in Nanolithography (ed. Feldman, M.) 179–193 (Woodhead Publishing, 2014).

  • Sugioka, K. & Cheng, Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev. 1, 041303 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gu, S., Chen, B., Xu, X., Han, F. & Chen, S. C. 3D nanofabrication via directed material assembly: mechanism, method, and future. Adv. Mater. 37, 2312915 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, J. et al. Supercritical metalens at h-line for high-resolution direct laser writing. Opto-Electron. Sci. 3, 230035 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B. et al. 4H-SiC metalens: mitigating thermal drift effect in high-power laser irradiation. Adv. Mater. 37, 2412414 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y., Mao, C., Gershnabel, E., Chen, M. & Fan, J. A. Large-area, high-numerical-aperture, freeform metasurfaces. Laser Photonics Rev. 18, 2300988 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Liu, J., Gong, W., Jiang, H. & Liu, S. Diffraction based single pulse measurement of air ionization dynamics induced by femtosecond laser. Opt. Express 29, 18601–18610 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7, 22–44 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 3DBenchy. https://www.3dbenchy.com/ (2024).

  • Zhang, P. et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials. Compos. Struct. 277, 114606 (2021).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P. et al. Direct-print 3D electrodes for large-scale, high-density, and customizable neural interfaces. Adv. Sci. 12, 2408602 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Dehaeck, S., Scheid, B. & Lambert, P. Adaptive stitching for meso-scale printing with two-photon lithography. Addit. Manuf. 21, 589–597 (2018).

    CAS 

    Google Scholar
     

  • Dudukovic, N. A. et al. Cellular fluidics. Nature 595, 58–65 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, L. J. & Ashby, M. F. Cellular Solids 2nd edn (Cambridge Univ. Press, 2014).

  • Patel, Z. S., Alrashed, A. O., Dwivedi, K., Salviato, M. & Meza, L. R. Rethinking ductility—a study into the size-affected fracture of additively manufactured polymers. Addit. Manuf. 84, 104113 (2024).

    CAS 

    Google Scholar
     

  • Dai, V. & Zakhor, A. in Emerging Lithographic Technologies IV Vol. 3997, 467–477 (SPIE, 2000).

  • Liu, H.-I., Dai, V., Zakhor, A. & Nikolic, B. in Emerging Lithographic Technologies X Vol. 6151, 632–645 (SPIE, 2006).

  • Nanoscribe Photonic Professional GT2. https://www.nanoscribe.com/en/products/photonic-professional-gt2/ (2025).

  • Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photon. 16, 784–791 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photon. 15, 932–938 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hugonin, J. P. & Lalanne, P. RETICOLO software for grating analysis. Preprint at https://arxiv.org/abs/2101.00901 (2025).

  • Holzwarth, C., Barwicz, T. & Smith, H. I. Optimization of hydrogen silsesquioxane for photonic applications. J. Vac. Sci. Technol. B 25, 2658–2661 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kawamoto, R., Andò, E., Viggiani, G. & Andrade, J. E. Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Choi, W. J. et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 18, 820–826 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, W. J., Lee, S. H., Cha, M. & Kotov, N. A. Chiral kirigami for bend-tolerant reconfigurable hologram with continuously variable chirality measures. Adv. Mater. 36, e2401131 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, W. et al. Helical photonic metamaterials for encrypted chiral holograms. Adv. Sci. 12, e07931 (2025).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments